
Parameterized Compilability
Master of Logic Thesis Defense

NOEL ARTECHE · Supervised by RONALD DE HAAN and HUBIE CHEN
July 11, 2022

Institute for Logic, Language and Computation (ILLC) · University of Amsterdam

Table of contents

1. Introduction

2. A new framework for parameterized compilability

3. Selected compilability results

4. Conclusion

1

Introduction

Classical (polynomial-size) compilation

Assume the instances x = (y, z) of a problem are made of two parts:

• y is the offline part;
• z is the online part.

We can (expensively) compile y into a representation y′ that can be
polynomially bigger to hopefully solve (y′, z) in polynomial time.

2

Compilation of logic problems

TERM INFERENCE
Does φ |= ℓ1 ∧ · · · ∧ ℓk?

CLAUSE INFERENCE
Does φ |= ℓ1 ∨ · · · ∨ ℓk?

FORMULA INFERENCE
Does φ |= ψ?

Compile φ!

Theorem
All three inference problems are coNP-complete.

3

Positive and negative results

Theorem (Selman and Kautz, 1996; Cadoli et al., 2002)
• TERM INFERENCE is efficiently compilable.
• CLAUSE INFERENCE is not efficiently compilable unless PH = Σp

2 .
• FORMULA INFERENCE is not efficiently compilable unless P = NP.

4

The parameter compilation framework

Chen’s 2015 parameter compilation framework models compilability
as a special case of fixed-parameter tractability (FPT).

We study parameterized problems (Q, κ) such that κ points at the
compilable part of the input.

Example (TERM INFERENCE)
On input (φ, ℓ1 ∧ · · · ∧ ℓk) we compile φ. Hence we are interested in
the parameterized problem (TERM INFERENCE, φ).

The framework consists of the (parameterized) classes poly-comp-C,
where C is a classical complexity class.

The class poly-comp-P models efficient compilation.

5

A new framework for
parameterized compilability

Doubly parameterized problems

We introduce doubly parameterized problems:

(Q, κ, λ)

where

• Q ⊆ Σ∗ is a decision problem;
• κ : Σ∗ → Σ∗, computable in polynomial time, points at the
compilable part of the input;

• λ : Σ∗ → Σ∗ is a parameterization that relaxes the size of the
compilation from polynomial-size to λ-fpt-size.

6

The new fpt-comp-C classes

Let C be a parameterized complexity class like FPT,W[1],para-NP...
We define fpt-comp-C as containing all the (Q, κ, λ) such that on
input x ∈ Σ∗,

• we can compile κ(x) into something of λ-fpt-size:

|c(κ(x), λ(x))| ≤ h(λ(x)) · p(|κ(x)|)

for some computable c, computable h and some polynomial p;
• x together with c(κ(x), λ(x)) and parameter λ(x) can be solved
within the resources of C.

Efficient parameterized compilation is captured by

fpt-comp-FPT = fpt-comp-P.

7

The fpt-comp reductions and methodology theorems

Our fpt-comp-C classes are closed under a new notion of reduction:
the fpt-comp reductions (≤fpt

comp).

Theorem (General methodology theorem, Thm. 2.19)
Let C and C′ be parameterized complexity classes (like FPT, W[1],
para-NP...). If

• (A, λ) is C-hard,
• (A, len, λ) ≤fpt

comp (B, κ, µ),
• (B, κ, µ) ∈ fpt-comp-C′,

then C ⊆ C′/ fpt.

Example
Take C = W[1] and C′ = FPT. If (CLIQUE, len, k) ≤fpt

comp (Q, κ, λ) and
(Q, κ, λ) ∈ fpt-comp-FPT, then W[1] ⊆ FPT/ fpt (cf. NP ⊆ P/ poly).

8

Selected compilability results

SAT COMPLETION

SAT COMPLETION

Instance A Boolean formula φ and a partial assign-
ment α.

Question Is there an extension of α into a satisfying
assignment for φ?

Additional parameterization
The number u of undefined variables in α.

Proposition
(SAT COMPLETION, φ) ̸∈ poly-comp-P (unless PH collapses) but
(SAT COMPLETION, φ,u) ∈ fpt-comp-FPT.

9

CSP COMPLETION

CSP COMPLETION

Instance An instance I = ⟨X,D, C⟩ of CSP and a partial
assignment α : X→ D.

Question Is there an extension of α into a satisfying
assignment for I?

Additional parameterization
The number u of undefined variables in α.

Theorem (Corollary 3.7)
(CSP COMPLETION,u) is W[1]-complete.

Theorem (Thm. 3.9)
(CSP COMPLETION, I,u) ̸∈ fpt-comp-FPT unless W[1] ⊆ FPT/ fpt.

10

Conclusion

Overview of results in the thesis

• We developed an extension of the parameter compilation
framework that models parameterized compilability (Chapter 2).

• We showed parameterized uncompilability results for
completion variants of problems around the classes W[1] and
W[2] (Chapters 3 and 4):

WEIGHTED q-SAT COMPLETION (chopped-W[1]-complete)
HITTING SET COMPLETION (chopped-W[2]-complete)
DOMINATING SET COMPLETION (chopped-W[1]-hard)
. . .

• We studied the issue of treewidth in compiling CSP instances,
both for CSP COMPLETION and inference problems related to CSP
(Chapter 5).

11

Future work

• Classify more problems under the framework.
• Show tighter classifications, e.g.

• for DOMINATING SET COMPLETION, currently chopped-W[1]-hard but
not chopped-W[2]-complete;

• for (CSP COMPLETION, I, ptw), currently chopped-W[1]-hard but not
known to be complete for any class.

• Focus on positive results.

12

Thanks for listening!

12

References

M. Cadoli, F. M. Donini, P. Liberatore, and M. Schaerf.
Preprocessing of intractable problems.
Information and computation, 176(2):89–120, 2002.

H. Chen.
Parameter compilation.
In 10th International Symposium on Parameterized and Exact
Computation, page 127, 2015.

B. Selman and H. Kautz.
Knowledge compilation and theory approximation.
Journal of the ACM (JACM), 43(2):193–224, 1996.

13

Reductions for poly-comp-C

Definition (≤poly
comp reductions)

We say that (A, κ) poly-comp-reduces to (B, λ) if there is

• a polynomial-size function c : Σ∗ → Σ∗,
• a polynomial-time function f : Σ∗ × Σ∗ → Σ∗

such that for all x ∈ Σ∗,

x ∈ A⇔ f(x, c(κ(x))) ∈ B

and there is a polynomial-size function s : Σ∗ → Pfin(Σ∗) such that

λ(f(x, c(κ(x)))) ∈ s(κ(x)).

A system for negative results

Hardness of problems is established via reductions from languages
where the compilation has access to the length of the input (len).

Theorem (Chen, 2015)
Let A be a C-complete language. If (A, len) ≤poly

comp (B, κ) and
(B, κ) ∈ poly-comp-C′, then C′ ⊆ C/poly.

Example
If (SAT, len) ≤poly

comp (A, κ) and (A, κ) ∈ poly-comp-P, then NP ⊆ P/poly.
By the Karp-Lipton theorem, PH collapses.

The case of SAT COMPLETION

SAT COMPLETION
Given a Boolean formula φ and a partial assignment α, decide
whether α can be extended into a satisfying assignment for φ.

Theorem
(3SAT, len) ≤poly

comp (SAT COMPLETION, π1).

Proof. Reduction via the “superinstance technique”. Over n variables,
there are

(2n
3
)
∈ O(n3) possible clauses. Enumerate them:

C = {C1, C2, C3 . . . } and build the formula
∧
ci∈C(ci → Ci). With a

partial assignment to the ci variables we can “configure” this
superinstance to represent our specific formula.

Corollary
(SAT COMPLETION, π1) ̸∈ poly-comp-P unless PH collapses.

HITTING SET and DOMINATING SET COMPLETION

HITTING SET COMPLETION (HS-C)

Instance An instance ⟨U, S, k⟩ of HITTING SET together
with sets I,O ⊆ U and a set A ⊆ S× U.

Question Is there a hitting set H ⊆ U of size k + |I|
such that I ⊆ H, H ∩ O = ∅ and for every
Si ∈ S, H ∩ (Si \ {u ∈ U | (u, Si) ∈ A}) ̸= ∅?

DOMINATING SET COMPLETION (DS-C)

Instance An instance of DOMINATING SET consisting of
a graph G = (V, E) and a number k, together
with sets I,O, S ⊆ V.

Question Is there a dominating set D for the induced
subgraph G[V\S] such that D is of size k+ |I|,
I ⊆ D and D ∩ O = ∅?

Complexity results

Proposition (Prop. 4.2 and 4.5)
(HS-C, k) and (DS-C, k) are W[2]-complete.

Theorem (Corollary 4.8)
(HS-C, ⟨U, S, k⟩) and (DS-C, ⟨G, k⟩) are both chopped-NP-complete.

Theorem (Corollary 4.9)
(HS-C, ⟨U, S, k⟩, k) is chopped-W[2]-complete.

(DS-C, ⟨G, k⟩, k) is chopped-W[1]-hard and in chopped-W[2].

	Introduction
	A new framework for parameterized compilability
	Selected compilability results
	Conclusion
	Appendix

