Parameterized Compilability

Master of Logic Thesis Defense

NOEL ARTECHE - Supervised by RONALD DE HAAN and HUBIE CHEN
July 11, 2022

Institute for Logic, Language and Computation (ILLC) - University of Amsterdam

Table of contents

1. Introduction

2. A new framework for parameterized compilability

3. Selected compilability results

4. Conclusion

Introduction

Classical (polynomial-size) compilation

Assume the instances x = (y, z) of a problem are made of two parts:

- yis the offline part;

- zis the online part.

We can (expensively) compile y into a representation y’ that can be
polynomially bigger to hopefully solve (y',z) in polynomial time.

Compilation of logic problems

Does p =01 A - AN L7

Does p =41V -V 47

Does ¢ = ¢?

Compile ¢!

All three inference problems are coNP-complete.

Positive and negative results

Theorem (Selman and Kautz, 1996; Cadoli et al., 2002)
- TERM INFERENCE is
- CLAUSE INFERENCE is unless PH = ¥5.
- FORMULA INFERENCE IS unless P = NP.

The parameter compilation framework

Chen’s 2015 parameter compilation framework models compilability
as a special case of fixed-parameter tractability (FPT).

We study parameterized problems (Q,) such that « points at the
compilable part of the input.

On input (p, 4 A -+ A L) we compile ¢. Hence we are interested in
the parameterized problem (TERM INFERENCE, ¢).

The framework consists of the (parameterized) classes poly-comp-C,
where Cis a classical complexity class.

The class poly-comp-P models efficient compilation.

A new framework for
parameterized compilability

Doubly parameterized problems

We introduce doubly parameterized problems:
(Q,5,7)
where

- Q C X*is a decision problem;

- Kk X* — X* computable in polynomial time, points at the
compilable part of the input;

- A X* — ¥*is a parameterization that relaxes the size of the
compilation from polynomial-size to A\-fpt-size.

The new fpt-comp-C classes

Let C be a parameterized complexity class like FPT, W[1], para-NP...
We define fpt-comp-C as containing all the (Q, x,) such that on
input x € ©*,

- we can compile x(x) into something of A\-fpt-size:

|c(#(x), AG))I < h(AX)) - p(IR(X)])

for some computable ¢, computable h and some polynomial p;

- x together with c(x(x), A\(x)) and parameter A(x) can be solved
within the resources of C.

Efficient parameterized compilation is captured by

fpt-comp-FPT = fpt-comp-P.

The fpt-comp reductions and methodology theorems

Our fpt-comp-C classes are closed under a new notion of reduction:
the fpt-comp reductions (<t).
Theorem (General methodology theorem, Thm. 2.19)
Let Cand C’ be parameterized complexity classes (like FPT, W[1],
para-NP..). If

- (A, \) is C-hard,

* (Alen, \) <E. (B, K,),

- (B, K,) € fpt-comp-C/,
then C C C'/ fpt.

Take C = W[1] and C’ = FPT. If (CLIQUE, len, k) <™ ' (Q, x,) and
(Q, K,) € fpt-comp-FPT, then W[1] C FPT/fpt (cf. NP C P/ poly).

Selected compilability results

SAT COMPLETION

SAT COMPLETION

Instance A Boolean formula ¢ and a partial assign-
ment a.

Question Is there an extension of « into a satisfying
assignment for ¢?

The number u of undefined variables in «.

(SAT COMPLETION,) ¢ poly-comp-P (unless PH collapses) but
(SAT COMPLETION, ¢, U) € fpt-comp-FPT.

CSP COMPLETION

CSP COMPLETION

Instance Aninstance | = (X, D, C) of CSP and a partial
assignment a : X — D.

Question Is there an extension of « into a satisfying
assignment for /?

The number u of undefined variables in a.

(CSP COMPLETION, u) is W[1]-complete.

(CSP COMPLETION, I, u) ¢ fpt-comp-FPT unless W[1] C FPT/ fpt.

Conclusion

Overview of results in the thesis

- We developed an extension of the parameter compilation
framework that models parameterized compilability (Chapter 2).
- We showed parameterized uncompilability results for
completion variants of problems around the classes W[1] and
W[2] (Chapters 3 and 4):

WEIGHTED q-SAT COMPLETION (chopped-W[1]-complete)
HITTING SET COMPLETION (chopped-W[2]-complete)
DOMINATING SET COMPLETION (chopped-W[1]-hard)

- We studied the issue of treewidth in compiling CSP instances,
both for CSP CoOMPLETION and inference problems related to CSP
(Chapter 5).

1

Future work

- Classify more problems under the framework.
- Show tighter classifications, e.g.

- for DOMINATING SET COMPLETION, currently chopped-W([1]-hard but
not chopped-W[2]-complete;

- for (CSP COMPLETION, [, ptw), currently chopped-W[1]-hard but not
known to be complete for any class.

- Focus on positive results.

Thanks for listening!

References

[d M. cadoli, F. M. Donini, P. Liberatore, and M. Schaerf,
Preprocessing of intractable problems.
Information and computation, 176(2):89-120, 2002.

ﬁ H. Chen.
Parameter compilation.
In 10th International Symposium on Parameterized and Exact
Computation, page 127, 2015.

[@ B.Selman and H. Kautz.
Knowledge compilation and theory approximation.
Journal of the ACM (JACM), 43(2):193-224, 1996.

Reductions for poly-comp-C

Definition (<P°Y reductions)

—comp

We say that (A, k) poly-comp-reduces to (B, \) if there is

- a C: 2% =X~
- a for*s xX* —x*

such that for all x € X*,
x €A < f(x,c(k(x))) € B
and there is a S X* — Pan(X*) such that

A(f(x; c(x(x)))) € s(x(x))-

A system for negative results

Hardness of problems is established via reductions from languages
where the compilation has access to the length of the input (len).

Let A be a C-complete language. If (A, len) <P (B,) and
(B, k) € poly-comp-C’, then C" C Cpoly.

If (SAT, len) <Po¥ (A,) and (A, «) € poly-comp-P, then NP C P qyy.
By the Karp-Lipton theorem, PH collapses.

The case of SAT COMPLETION

Given a Boolean formula ¢ and a partial assignment «, decide
whether o can be extended into a satisfying assignment for .

(3SAT, len) <Pol ' (SAT COMPLETION, 7r7).
Proof. Reduction via the “superinstance technique”. Over n variables,
there are (23”) € 0(n?) possible clauses. Enumerate them:
C={G,G,G...}and build the formula A (¢ — C). With a
partial assignment to the ¢; variables we can “configure” this
superinstance to represent our specific formula.

|

(SAT COMPLETION,) ¢ poly-comp-P unless PH collapses.

HITTING SET and DOMINATING SET COMPLETION

HITTING SET COMPLETION (HS-C)

Instance An instance (U, S, R) of HITTING SET together
with sets ,O C UandasetAC S x U.

Question Is there a hittingset H C U of size k + |/|
suchthat! € H,HN O = 0 and for every
SieSSHN (S \{ueU|(u,S) eA}) #0?

DOMINATING SET COMPLETION (DS-C)

Instance An instance of DOMINATING SET consisting of
a graph G = (V,E) and a number R, together
with sets [,0,S C V.

Question Is there a dominating set D for the induced
subgraph G[V\ S] such that D is of size R+|l],
ICDand DNO = (?

(HS-C,R) and (DS-C, R) are W[2]-complete.

(HS-C, (U, S, R)) and (DS-C, (G, k)) are both chopped-NP-complete.
(HS-C, (U, S, R), R) is chopped-W[2]-complete.
(DS-C, (G, k), R) is chopped-W|[1]-hard and in chopped-W[2].

	Introduction
	A new framework for parameterized compilability
	Selected compilability results
	Conclusion
	Appendix

