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Abstract

We prove the first hardness results against efficient proof search by quantum algorithms. We show that under
Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no quantum algorithm can
weakly automate TC0-Frege. This extends the line of results of Krajíček and Pudlák (Information and Computation,
1998), Bonet, Pitassi, and Raz (FOCS, 1997), and Bonet et al. (Computational Complexity, 2004), who showed that
Extended Frege, TC0-Frege and AC0-Frege, respectively, cannot be weakly automated by classical algorithms
if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the best of our
knowledge, this is the first interaction between quantum computation and propositional proof search.

1 Introduction

Understanding the fundamental limits of efficient proof search is one of the main goals of proof complexity, a
subfield of complexity theory. Classically, propositional proof complexity has been primarily concerned with
proving lower bounds for the length of proofs in propositional proof systems, with the ultimate goal of settling
whether NP = coNP [CR79]. In parallel, a growing line of research has focused on the computational hardness
of finding propositional proofs.

Proof search is formally captured by the notion of automatability, introduced by Bonet, Pitassi, and Raz
[BPR00]: a propositional proof system 𝑆 is automatable if there exists an algorithm that given as input a tautology
𝜑 , outputs an 𝑆-proof of 𝜑 in time polynomial in the size of the shortest proof. By relating proofs and computation,
automatability connects proof complexity to central areas of theoretical computer science such as automated
theorem proving, SAT solving and combinatorial optimization [BN21], learning theory [PS22], or Kolmogorov
complexity [Kra22].

Except for very weak proof systems like Truth Tables or Tree-Like Resolution (automatable in polynomial
and quasipolynomial time [BP96; dRez21], respectively), most natural systems appear to be non-automatable
under standard hardness assumptions. Existing hardness results can be split into two broad categories. Work
from the late 90s and early 00s showed that stronger proof systems are non-automatable under cryptographic
assumptions, while more recent work has showed that weaker proof systems are non-automatable under the
optimal assumption that P ≠ NP.

The cryptography-based approach was initiated by the seminal work of Bonet, Pitassi, and Raz [BPR00],
which showed that TC0-Frege is hard to automate unless Blum integers can be factored by polynomial-size
circuits. An earlier work of Krajíček and Pudlák [KP98] was then recast in the language of automatability,
showing that Extended Frege is not automatable unless factoring can be solved efficiently. Finally, Bonet et al.
[BDG+04] extended the result of [BPR00] from TC0-Frege to AC0-Frege under the stronger assumption that
Blum integers cannot be factored by subexponential-size circuits.

Building on a long line of work [Iwa97; AB04; ABMP06; AR08; MPW19], the first NP-hardness result was
shown in 2019, when Atserias and Müller [AM20] proved that Resolution is not automatable unless P = NP.
This is optimal, as P = NP implies the automatability of any proof system. Their proof uses a clever reduction
from SAT that requires showing a specific lower bound for this system. The technique has since been adapted to
other weak proof systems such as Regular and Ordered Resolution [Bel20], 𝑘-DNF Resolution [Gar20], Cutting
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Planes [GKMP20], Nullstellensatz and Polynomial Calculus [dRGN+21], the OBDD proof system [IR22] and,
more recently, even AC0-Frege [Pap23].

Though the latter works prove non-automatability under the optimal hardness assumption, their strength
is incomparable to the cryptography-based results. The NP-hardness results all rely on proving specific super-
polynomial proof complexity lower bounds for each system, meaning this strategy fails for AC0 [2]-Frege and
systems above, where no lower bounds are known. In contrast, the cryptographic hardness results work by
ruling out feasible interpolation for these systems, a property which allows one to extract computational content
from proofs. For a proof system 𝑆 proving its own soundness (such as TC0-Frege), feasible interpolation is
equivalent to the notion of weak automatability introduced by Atserias and Bonet [AB04], the latter meaning
that no proof system simulating 𝑆 is automatable. The question of whether weak systems such as Resolution
are weakly automatable remains one of the major open problems in the field. In short, there exists a trade-off
between the strength of the hardness assumption involved (P ≠ NP versus cryptographic) and the generality of
the result (automatability versus weak automatability).

Our work is the first new contribution to the non-automatability of strong proof systems1 in more than two
decades. The early results in [KP98; BPR00; BDG+04] relied on the assumption that factoring is hard, which
does not hold for quantum models of computation due to Shor’s breakthrough algorithm [Sho94]. This raises the
question of whether a quantum machine could carry out proof search efficiently for some strong proof system.
Grover’s search algorithm [Gro96] already provides a quadratic speed-up over brute-force proof search for any
system. While this is not enough to achieve automatability, the possibility of more powerful algorithms motivates
the interest in new conditional hardness results. The NP-hardness results outlined above imply that NP ⊈ BQP
suffices to rule out automatability for weak systems, but for stronger systems no widely believed assumption had
yet been proven sufficient.

In this work, we formally define the notion of quantum automatability and show the first hardness results.
We prove that TC0-Frege is not quantum automatable unless lattice-based cryptography can be broken by
polynomial-size quantum circuits. Our results follow from the relationship between automatability and feasible
interpolation suitably generalized to the quantum setting. This means that we also rule out quantum feasible
interpolation and weak quantum automatability under the same cryptographic assumptions.

Contributions

Our main contribution is proving the hardness of quantum automatability under the assumption that lattice-based
cryptography is secure against quantum computers.

In 1996, Ajtai [Ajt96] gave the first worst-case to average-case reductions for lattice problems. In 1997, in
joint work with Dwork [AD97], the worst-case hardness of such lattice problems was used to design public-key
cryptosystems. Building on similar principles, the Learning with Errors (LWE) assumption of Regev [Reg09]
has become the standard post-quantum cryptographic assumption. The LWE assumption is simple to state,
surprisingly versatile, and does not seem susceptible to the core period-finding technique of Shor’s algorithm.

In this work we show that any quantum algorithm that automates TC0-Frege can be used to break LWE.

Theorem (Main theorem, informal). If there exists a polynomial-time quantum algorithm that weakly automates
TC0-Frege, then LWE can be broken in polynomial time by a quantum machine.

We then exploit the simulation of TC0-Frege by AC0-Frege proofs of subexponential size to extend the result
to AC0-Frege under a slightly stronger assumption, in the style of [BDG+04].

Corollary. If there exists a polynomial-time quantum algorithm that weakly automates AC0-Frege, then LWE can
be broken by subexponential-size quantum machines.

In order to properly state and prove these results, we first formally define the notion of quantum automatability
for quantum Turing machines. Note that a quantum algorithm might provide a wrong answer with small
probability, so we need to be careful in choosing the right definitions. We show that our definition is equivalent to
a similar one over uniform quantum circuits, and we verify that the definition is robust by reproving Impagliazzo’s
observation that weak automatability implies feasible interpolation, suitably translated to the quantum setting.

1We use the terms weak and strong informally throughout the paper. Traditionally, a strong proof system is a system that proves its own
soundness, though it is often also intended to be a system for which lower bounds are lacking. For our purposes, strong refers to anything
simulating TC0-Frege, for which both of the previous conditions apply.
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Techniques

The overall structure of the proofs follows the strategy of the previous non-automatability results of [KP98]
and [BPR00], but the technical details are quite different due to certain complications arising from lattice-based
cryptography. We outline below the main hurdles and the techniques used to overcome them.

Quantum feasible interpolation. Our result follows from conditionally ruling out feasible interpolation
by quantum circuits. As observed by Impagliazzo, weak automatability implies feasible interpolation. We use
this observation contrapositively. Suppose that a proof system can prove the injectivity of a candidate one-way
function. In the presence of feasible interpolation, we are guaranteed the existence of small circuits capable
of inverting the one-way function one bit at a time. If one believes in the security of the cryptographic object,
one must conclude that the proof system does not admit feasible interpolation, and in turn that it is not weakly
automatable.

For this strategy to work the candidate one-way function should fulfill two important conditions. First, its
definition must be simple enough that the proof system can easily reason about it. For example, RSA requires
modular exponentiation to be defined, which is conjectured not to be computable in TC0. This forced Bonet,
Pitassi, and Raz to use instead the Diffie-Hellman protocol in [BPR00]. Second, the candidate one-way function
must be perfectly injective. The rather technical reason for perfect injectivity is that feasible interpolation allows
one to carry out the inversion bit by bit, which does not guarantee retrieving a correct preimage if there are
multiple ones.

A few perfectly injective one-way functions based on lattice geometry have been proposed throughout the
literature, e.g., see [PW08; GKVW20; MP12]. However, we consider instead a simple scheme for worst-case
lattice-based functions that closely resembles the one described in [Mic11]. Such a scheme has the advantage
that its injectivity can be easily verified, and that its worst case one way-ness is guaranteed by the assumed
hardness of Learning with Errors, which we will now discuss.

Learning with Errors and certificates of injectivity. We base our construction directly on the Learning
with Errors assumption. The assumption is simple to define: roughly speaking, it conjectures that a vector 𝑥
multiplied by some public matrix 𝐴, together with some Gaussian noise, 𝐴𝑥 + 𝜀, is hard to recover. While the
most naive functions based on LWE are not necessarily injective, we can bound the magnitude of the error
vectors to construct a family of functions where almost all of the functions are injective. For most matrices 𝐴,
the corresponding function 𝑓𝐴 in this family is worst-case one-way assuming the hardness of LWE [Mic11].

However, the functions being injective and worst-case one-way is not sufficient, because their injectivity
needs to provable inside TC0-Frege. Unlike with the Diffie-Hellman construction in [BPR00], where a single
proof showed the injectivity of the protocol for all generators, here each injective 𝑓𝐴 may require a tailored proof
of injectivity. Fortunately, most of these 𝑓𝐴 can have their injectivity certified by a left-inverse of 𝐴 together with
a short basis for the dual lattice of the 𝑞-ary lattice spanned by 𝐴. These short bases not only certify injectivity,
they can be used as a trapdoors to invert the function [Pei+16]. Though we do not exploit this directly, one may
think of the automating algorithm as extracting such trapdoors from proofs. Essentially, these certificates can be
exploited to prove the injectivity of most 𝑓𝐴 inside TC0-Frege.

With these properties we can show that feasible interpolation can be used to invert almost all 𝑓𝐴, which is
sufficient to break LWE and its associated worst-case lattice problems.

Formal theories for linear algebra. The most technical component of the previous work on TC0-Frege
and AC0-Frege in [BPR00; BDG+04] consisted in formalizing many basic properties of arithmetic directly inside
the propositional proof systems, which can be quite cumbersome. While we can borrow a large part of the
existing formalization in [BPR00], putting it together to carry out arguments about lattice geometry is still quite
convoluted.

Instead, we follow the approach of Krajíček and Pudlák, who showed the injectivity of RSA in Extended
Frege by reasoning in Buss’s theory 𝑆1

2 of bounded arithmetic. Universal theorems of this first-order theory
translate into propositional tautologies with succinct proofs in Extended Frege. For TC0-Frege and its sequent
calculus formalism PTK, the corresponding first-order theory of bounded arithmetic is the two-sorted theory
VTC0 introduced by Cook and Nguyen [CN10]. This theory is quite expressive and can reason even about analytic
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functions, as shown by Jeřábek [Jeř23]. However, since we are mostly interested in statements of matrix algebra,
we use the more convenient formal theory LA for linear algebra introduced by Soltys and Cook [SC04].

The theory LA is quantifier-free and operates directly with matrices. It is strong enough to prove their ring
properties, but weak enough to allow all theorems in LA to translate into propositional tautologies with short
TC0-Frege proofs. In order to handle all the concepts required in our arguments, we work over a conservative
extension of LA over the rationals which we show still propositionally translates into TC0-Frege.

Open problems

To the best of our knowledge, this is the first interaction between quantum computation and propositional proof
search, and we believe connections between the two fields are worthwhile exploring further. We outline below
three open lines of research, ranging from the interaction between quantum computation and proof complexity
to a classical problem in the theory of automatability.

Positive results? While hardness of proof search in most natural proof systems is now conditionally ruled
out under different assumptions, there exists a handful of systems for which no non-automatability results
are known. This is the case of the Res(⊕), Res(log), Sherali-Adams or Sum-of-Squares proof systems. Could
quantum algorithms automate any of these systems efficiently?

Even for proof systems where worst-case hardness is known, could quantum algorithms provide a significant
speed-up over brute-force search? Clearly, Grover’s algorithm achieves already a quadratic speed-up, but could
this be pushed further in some cases?

Quantum proof complexity. Hardness results in automatability involve three key elements: the proof
system, the hardness assumption and the model of computation for the automating algorithm. In this work
we shifted the latter two to the quantum setting, by choosing a post-quantum cryptographic assumption and a
quantum model of computation, but the proof systems considered remained classical.

What would it mean to have an inherently quantum proof system? In the same way that Extended Frege can
be seen as P/poly-Frege, could we define a proof system where lines are quantum circuits? This could open the
door to a quantum analogue of the Cook-Reckhow program, where showing lower bounds on quantum proof
systems would be related to the question of whether QMA = coQMA. We note that an analogous approach
exists in the field of parameterized complexity, starting with the work of Dantchev, Martin, and Szeider [DMS11],
who defined parameterized proof complexity as a program to gain evidence on the W-hierarchy being different
from FPT. As an intermediate step, it would make sense to consider the case of randomized proof systems and
the relationship between MA and coMA, though this has proven to be challenging so far.

We remark that while Pudlák [Pud09] already defined the notion of quantum derivation rules for propositional
proof systems and defined the quantum Frege proof system, his approach is orthogonal to ours, in that those
systems are still designed to derive propositional tautologies. In fact, he showed that classical Frege systems
simulate quantum Frege systems, though classical Frege proofs cannot be extracted from quantum proofs by a
classical algorithm unless factoring is in FP.

Towards generic hardness assumptions. Our results, like the original works in [KP98; BPR00; BDG+04],
require concrete cryptographic assumptions. That is, we assume that some specific candidate one-way function
or cryptographic protocol is secure. The reason is that in order to obtain the upper bounds on which to apply
feasible interpolation we need concrete formulas to manipulate inside the different proof systems.

A major open problem in the theory of automatability is to disentangle these results from concrete families
of candidate one-way functions. That is, can we prove that TC0-Frege is not (weakly) automatable under the
assumption that, say, one-way functions exist? Even better, can one obtain NP-hardness of automating strong
proof systems without the need to prove lower bounds first, in a way different from the strategy of Atserias and
Müller [AM20]? This seems to require conceptual breakthroughs.

Structure of the paper

The paper is structured as follows. Section 2 recalls the necessary concepts in proof complexity and lattice-based
cryptography needed in the rest of the paper. Section 3 defines automatability for quantum Turing machines
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and uniform quantum circuits and proves the equivalence between both models to then reprove Impagliazzo’s
observation on the relation between automatability and feasible interpolation, now in the quantum setting.
Section 4 states and proves the main theorem of the paper. The section first presents a detailed overview of the
main argument, while the subsections contain all the necessary technical work.

2 Preliminaries

We assume basic familiarity with computational complexity theory, propositional logic and quantum circuits.
We review the main concepts needed from proof complexity and refer the reader to standard texts like [Kra19]
for further details. We also recall some relevant notions from linear algebra and lattice geometry useful in our
arguments.

2.1 Proof complexity

Following Cook and Reckhow [CR79], a propositional proof system 𝑆 for the language Taut of propositional
tautologies is a polynomial-time surjective function 𝑆 : {0, 1}∗ → Taut. We think of 𝑆 as a proof checker that
takes some proof 𝜋 ∈ {0, 1}∗ and outputs 𝑆 (𝜋) = 𝜑 , the theorem that 𝜋 proves. Soundness follows from the fact
that the range is exactly Taut, and implicational completeness is guaranteed by the fact that 𝑆 is surjective. One
may alternatively define proof systems for refuting propositional contradictions. We move from one setup to the
other depending on context.

We denote by size𝑆 (𝜑) the size of the smallest 𝑆-proof of 𝜑 plus the size of 𝜑 . We say that a proof system 𝑆

is polynomially bounded if for every 𝜑 ∈ Taut, size𝑆 (𝜑) ≤ |𝜑 |𝑂 (1) . We say that a proof system 𝑆 polynomially
simulates a system 𝑄 if for every 𝜑 ∈ Taut, size𝑆 (𝜑) ≤ size𝑄 (𝜑)𝑂 (1) . For a family {𝜑𝑛}𝑛∈N of propositional
tautologies, we write 𝑆 ⊢ 𝜑𝑛 whenever size𝑆 (𝜑𝑛) ≤ |𝜑 |𝑂 (1) . Finally, a proof system 𝑆 is said to be closed under
restrictions if whenever 𝑆 proves a formula 𝜑 in size 𝑠 , for every partial restriction 𝜌 to the variables in 𝜑 , there
exists a proof of the restricted formula 𝜑↾𝜌 in size 𝑠𝑂 (1) .

The focus of this work is on a specific class of proof systems known as Frege systems. A Frege system is a
finite set of axiom schemas and inference rules that are sound and implicationally complete for the language
of propositional tautologies built from the Boolean connectives negation (¬), conjunction (∧), and disjunction
(∨). A Frege proof is a sequence of formulas where each formula is obtained by either substitution of an axiom
schema or by application of an inference rule on previously derived formulas. As long as the set of inference
rules is finite, sound and implicationally complete, the specific choice of rules does not effect the size of the
proofs up to polynomial factors, as all Frege systems polynomially simulate each other [Kra19, Theorem 4.4.13].

We can make gradations between Frege systems by restricting the complexity of their proof lines. For a
circuit class C, the system C-Frege is any Frege system where lines are restricted to be C-circuits (see [Jer05] for
a formal definition). In this setup, a standard Frege system amounts to NC1-Frege. We are mostly interested in
the weaker systems AC0-Frege and TC0-Frege, where the proof lines are, respectively, circuits of constant-depth
and unbounded fan-in, and threshold circuits of constant-depth and unbounded fan-in. A threshold circuit is a
Boolean circuit where gates can be the usual ¬,∨,∧ as well as the threshold ones Th𝑘 (𝑥1, . . . , 𝑥𝑛), where Th𝑘 is
true if at least 𝑘 of its input are true.

It is often convenient to consider an alternative formalism of TC0-Frege in the style of Gentzen’s sequent
calculus. The Propositional Threshold Calculus PTK [CN10, Chapter X.4.1] is a version of the propositional sequent
calculus where the cuts are restricted to threshold formulas of constant depth. We refer to [BPR00] for a complete
rendering of the derivational rules of PTK.

2.2 Lattice geometry

We recall some basic definitions from lattice geometry. For a linearly independent set of 𝑛 vectors B =

{𝑏1, . . . , 𝑏𝑛} ⊆ R𝑚 , which we often treat simply as an 𝑚 × 𝑛 matrix, the lattice over B is defined to be the
set of all integer linear combinations of vectors in B,

L(B) B {𝑥 ∈ R𝑚 | there is 𝑎 ∈ Z𝑛 such that 𝑥 = B𝑎} .
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When the vectors in B belong in Z𝑚𝑞 for some modulus 𝑞, we can further define a modular lattice over B,
denoted L𝑞 (B), to be the set of all integer linear combinations of the basis modulo 𝑞,

L𝑞 (B) B {𝑥 ∈ Z𝑚𝑞 | there is 𝑎 ∈ Z𝑛𝑞 such that B𝑎 ≡ 𝑥 mod 𝑞} ,

where the mod function is applied element-wise in the vector.
We define the length of a vector 𝑥 in L𝑞 (B) to be the Euclidean norm of the shortest vector in Z𝑚 that is

congruent to 𝑥 modulo 𝑞. Note that these shortest vectors will always fall in the domain [−⌊𝑞/2⌋, ⌊𝑞/2⌋]𝑚 .
A 𝑞-ary lattice Δ𝑞 (B) can be thought of as an extension of a modular lattice back to Z𝑚 and is the set of all

vectors 𝑥 ∈ Z𝑚 congruent to members of the modular lattice,

Δ𝑞 (B) B {𝑥 ∈ Z𝑚 | there is 𝑎 ∈ Z𝑛 such that B𝑎 ≡ 𝑥 mod 𝑞} .

Note that because for all 𝑥 ∈ {0, 𝑞}𝑚 , 𝑥 ∈ Δ𝑞 (B), we have that all 𝑞-ary lattices have rank𝑚.
From the definitions above it is clear that L𝑞 (B) ⊆ Δ𝑞 (B). Consequently a proof that no vector in Δ𝑞 (B)

has length less than ℓ also proves that no vector in L(B) has length less than ℓ .
Another important concept in lattice geometry is that of a dual lattice. Given a lattice L(B), its dual lattice

L∗ (B) is defined to be the set of vectors within the subspace spanned by B whose inner product with any
element in L is an integer. Formally,

L∗ (B) B {𝑦 ∈ R𝑚 | there is 𝑧 ∈ R𝑛 such that 𝑦 = B𝑧 and for all 𝑥 ∈ L(B), ⟨𝑥,𝑦⟩ ∈ Z} ,

where ⟨·, ·⟩ denotes the inner product. The dual lattice is also a lattice, whose base admits a closed form.

Lemma 2.1. For a base B ∈ R𝑚×𝑛 , L∗ (B) = L(B(B⊺B)−1).

Note that, if B ∈ Z𝑚×𝑛 , it is easy to show that B(B⊺B)−1 ∈ Q𝑚×𝑛 , and, therefore, that any 𝑥 ∈ L∗ (B)
belongs to Q𝑚 . This lemma is standard and can be found, for example, in [Mic11].

Modular lattices and 𝑞-ary lattices are fairly different mathematical objects, but we can show that given a
matrix B ∈ Z𝑚×𝑛

𝑞 such that rank(B) = 𝑛, there exists a closed form for a matrix B′ such that L(B′) = Δ𝑞 (B).

Lemma 2.2 (Full-rank modular lattices have 𝑞-ary lattice bases). Let B ∈ Z𝑚×𝑛
𝑞 and define 𝐶 ∈ {0, 1}𝑚×𝑚 to be

the permutation matrix that swaps the appropriate rows so that the first 𝑛 rows of 𝐶B are linearly independent.
Let B1 ∈ Z𝑛×𝑛 and B2 ∈ Z𝑚−𝑛×𝑛 be matrices such that B = [𝐶B1 | 𝐶B2]⊺ . Then, for B ∈ Z𝑚×𝑛

𝑞 , if rank(B) = 𝑛,
Δ𝑞 (B) = L(B′), where

B′ = 𝐶

[
𝐼𝑛 0

(𝐶B)2 (𝐶B)−1
1 𝑞𝐼𝑚−𝑛

]
𝐶−1 ,

and where the inverses 𝑀−1 are defined over the modular lattice Z𝑚𝑞 .

Note that we can combine this corollary with Lemma 2.1 to get a closed form for B′ such that Δ∗
𝑞 (B) = L(B′).

The 𝑖-th successive minimum of a lattice L is 𝜆𝑖 (L) B inf{𝑟 ∈ Z | dim(span(L ∩𝐵(0, 𝑟 ))) ≥ 𝑖}, where 𝐵(0, 𝑟 )
is the ball of radius 𝑟 around the origin. Roughly speaking, this means that 𝜆𝑖 (L) is the length of the 𝑖-th smallest
linearly independent vector in the lattice.

There exists an intimate relationship between a lattice and its dual, as captured by Banaszczyk’s Transference
Theorem.

Theorem 2.3 (Transference Theorem [Ban93]). For any rank-𝑛 lattice L ⊆ Z𝑚 , 1 ≤ 𝜆1 (L) · 𝜆𝑛 (L∗) ≤ 𝑛.

Modular lattices L𝑞 (B) are subsets of Z𝑚𝑞 , not Z𝑚 , and therefore the Transference Theorem does not directly
apply. However we are able to leverage the fact that 𝜆1 (Δ𝑞 (B)) = min(𝑞, 𝜆1 (L𝑞 (B))) to indirectly apply it
through the 𝑞-ary lattice.

We recall useful properties of random lattices.

Lemma 2.4. For a randomly selected matrix 𝐴 ∈ Z𝑚×𝑛
𝑞 , we have that

(i) Pr𝐴 [rank(𝐴) = 𝑛] ≥ 𝑛/𝑞𝑚−𝑛+1;

(ii) Pr𝐴 [𝜆1 (L𝑞 (𝐴)) < 𝑟 | rank(𝐴)] ≤ (2𝑟 + 1)𝑚/𝑞𝑚−2𝑛−1.

These properties are folklore. For the sake of completeness, we provide proofs in Appendix C.
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2.3 Learning with Errors (LWE)

Learning with Errors (LWE) is a central problem of learning theory, introduced by Regev [Reg09].

Assumption 2.5 (The Learning with Errors (LWE) assumption [Reg09; Pei+16]). Let𝑚 = 𝑛𝑂 (1) , 𝑞 ≤ 2𝑛
𝑂 (1)

, let
𝑠 ∼ Z𝑛𝑞 be a secret vector, 𝐴 ∼ Z𝑚×𝑛

𝑞 , and 𝜀 ∈ Z𝑚𝑞 a sample from the discrete Gaussian with standard deviation 𝛼𝑞

with 𝛼 = 𝑜 (1) and 𝛼 ∈ [0, 1]. The Learning with Errors assumption states that there is no quantum inverter 𝑀
running in time 𝑛𝑂 (1) such that 𝑀 (𝐴,𝐴𝑠 +𝜀) outputs with noticeable probability some 𝑠′ such that𝐴𝑠′ +𝜀 = 𝐴𝑠 +𝜖 ,
where the probability is over the choice of 𝑠 , 𝐴, 𝜀, and the internal randomness of 𝑀 .

The security of this assumption relies on the existence of worst-case to average-case reductions to fundamental
lattice problems conjectured to be hard. In particular, as shown by Regev [Reg09], breaking LWE implies solving
the 𝛾-GapSVP problem for an approximation factor 𝛾 = 𝑛2. Here, 𝛾-GapSVP refers to the 𝛾-Approximate Shortest
Vector Problem: given a lattice basis B ∈ Q𝑚×𝑛 and a distance threshold 𝑟 > 0, decide whether 𝜆1 (L(B)) ≤ 𝑟 , or
𝜆1 (L(B)) > 𝛾𝑟 , when one of those cases is promised to hold.

The belief that 𝛾-GapSVP is intractable is backed by the fact that the problem is NP-hard under randomized
reductions when the approximation factor is constant [Ajt96; Pei+16; BP23]. However, for the range of 𝛾 in which
the reduction to LWE works, no NP-hardness is known. Obtaining NP-hardness for polynomial approximation
factors would imply the breakthrough consequence of basing cryptography on worst-case hardness assumptions.
In turn, this would turn our non-automatability results into NP-hardness results. As appealing as this might
be, it is unlikely. For 𝛾 ≥

√
𝑛, the problem 𝛾-GapSVP is known to be in NP ∩ coNP [AR05] and thus cannot be

NP-hard unless PH collapses.

2.4 The formal theory LA

The theory LA is a quantifier-free theory introduced by Soltys and Cook [SC04] whose main objects are matrices.
This is not technically speaking a first-order theory of bounded arithmetic like those used in [KP98], but like
them it admits a propositional translation into Frege systems.

The system LA operates over three sorts: indices (intended to be natural numbers), field elements (over some
abstract field F), and matrices (with entries over F). Variables for these three sorts are usually denoted 𝑖, 𝑗, 𝑘, . . . for
indices, 𝑎, 𝑏, 𝑐, . . . for field elements, and 𝐴, 𝐵,𝐶, . . . , for matrices. We sometimes use lower-case letters 𝑣,𝑤, . . .

for vectors, which are seen as a special case of matrices.
The language of LA consists of the following constant, predicate and function symbols, over the three different

sorts:

• Index sort: 0index, 1index, +index, ·index,−index, div, rem, condindex, ≤index,=index

• Field sort: 0field, 1field, +field, ·index,−index,
−1 , r, c, e, Σ, condfield,=field

• Matrix sort: =matrix

The meaning of the symbols is the standard one, except for −index that denotes the cutoff subtraction (𝑖 − 𝑗 = 0
if 𝑖 < 𝑗 ) and for 𝑎−1, denoting the inverse of a field element 𝑎, with 0−1 = 0. For operations over matrices,
r(𝐴) and c(𝐴) are, respectively, the number of rows and columns in 𝐴, e(𝐴, 𝑖, 𝑗) is the field element 𝐴𝑖, 𝑗 (with
e(𝐴, 𝑖, 𝑗) = 0 if either 𝑖 = 0, 𝑗 = 0, 𝑖 > r(𝐴) or 𝑗 > c(𝐴)) and Σ𝐴 is the sum of the elements in 𝐴. The function
symbol cond(𝛼, 𝑡1, 𝑡2) is interpreted to mean that if 𝛼 holds, then the returned value should be 𝑡1, else 𝑡2, where 𝛼
is a formula all of whose atomic subformulas have the form𝑚 ≤ 𝑛 or𝑚 = 𝑛, where𝑚 and 𝑛 are of the index sort,
and 𝑡1, 𝑡2 are terms either both of index sort or both of field sort.

The language of LA can be enriched with the following defined terms: index maximum (max), matrix sum
(+, when sizes of the matrices are compatible), scalar product (·), matrix transpose (𝐴⊺), zero (0) and identity
matrices (𝐼 ), matrix trace (tr), dot product (⟨_, _⟩), and matrix product (·). See [SC04, Section 2.1] for details on
the definitions of these terms. In general, whenever it is clear from context, we drop the subscripts indicating the
sort and we use standard linear algebra notation for the sake of readability.

The theory then consists of several groups of axioms fixing the meaning of these symbols. These are rather
lengthy to state, so we relegate them to Appendix A.1, where we also include several theorems derived by Soltys
and Cook inside LA.

Observe that the theory is field-independent, but whenever we fix the field to be either finite or Q, LA has
the robust property that every theorem translates into a family of propositional formulas with short TC0-Frege
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proofs. This is the main property of LA that we shall exploit, which corresponds to Theorem 6.3 in their original
paper.

3 Quantum automatability and feasible interpolation

Following [BPR00], we say that a propositional proof system 𝑆 is automatable in time 𝑡 if there exists a deterministic
Turing machine 𝐴 that on input a formula 𝜑 outputs an 𝑆-proof of 𝜑 , if one exists, in time 𝑡 (size𝑆 (𝜑)). We now
consider the possibility of replacing 𝐴 by a probabilistic or quantum Turing machine. The main issue in the
definition is now that the output of the machine may be erroneous, albeit with small probability. Note, however,
that if a machine were to output an incorrect proof, we would be able to easily detect this, since we can verify
the proofs in polynomial time. We may thus assume that when yielding an incorrect proof, the machine will
restart and find another one. Hence, instead of asking for the error-probability of the machine to be bounded, we
ask for the expected running time to be bounded. The following definition captures this idea.

Definition 3.1 (Quantum and randomized automatability). Let 𝑆 be a propositional proof system and let
𝑡 : N→ N be a time-constructible function. We say that 𝑆 is quantum (respectively, random) automatable in time
𝑡 or simply quantumatable in time 𝑡 if there exists a quantum Turing machine (respectively, a randomized Turing
machine) that on input a formula 𝜑 outputs an 𝑆-proof of 𝜑 , if one exists, in expected time 𝑡 (size𝑆 (𝜑)).

In what follows, we assume 𝑡 to be a polynomial and talk simply about a system being automatable or
quantum automatable, without reference to 𝑡 . Since quantum circuits are often more convenient than quantum
Turing machines, we also define automatability in the circuit setting.

Definition 3.2 (Circuit automatability). Let 𝑆 be a propositional proof system. We say that 𝑆 is circuit-automatable
if there exists a constant 𝑐 and a uniform multi-output circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N of size (𝑛 + 𝑠)𝑐 such that 𝐶𝑛,𝑠

takes as input a formula 𝜑 of size 𝑛 and outputs an 𝑆-proof of size 𝑠𝑐 if a proof of size 𝑠 exists, and is allowed to
output any string otherwise.

The generalization to randomized and quantum circuits is now immediate.

Definition 3.3. Let 𝑆 be a propositional proof system. We say 𝑆 is quantum circuit-automatable if there exists a
constant 𝑐 and a uniform multi-output quantum circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N of size (𝑛 + 𝑠)𝑐 such that 𝐶𝑛,𝑠 takes
as input a formula 𝜑 of size 𝑛, and outputs an 𝑆-proof of size 𝑠𝑐 with probability at least 2/3 if a proof of size 𝑠
exists, and is allowed to output any string otherwise. We say that 𝑆 is random circuit-automatable if the circuit is
classical but also takes as input a sequence 𝑟 of random bits and, for at least 2/3 of the choices for 𝑟 , 𝐶𝑛,𝑠 (𝜑, 𝑟 )
outputs an 𝑆-proof of size 𝑠𝑐 if a proof of size 𝑠 exists, and is allowed to output any string otherwise.

In fact, the machine-based and circuit-based definitions are equivalent.

Proposition 3.4. Let 𝑆 be a propositional proof system. The following equivalences hold:

(i) the system 𝑆 is automatable if and only if it is circuit-automatable;

(ii) the system 𝑆 is random automatable if and only if it is random circuit-automatable;

(iii) the system 𝑆 is quantum automatable if and only if it is quantum circuit-automatable.

We defer the rather simple proof to Appendix B.
Even if a proof system is not automatable, one might still hope for an algorithm that finds some proof efficiently,

even if it is in a different proof system. We say that a proof system 𝑆 is weakly automatable if there exists another
proof system 𝑄 and an algorithm 𝐴 that given a formula 𝜑 , outputs a 𝑄-proof of 𝜑 in time size𝑆 (𝜑)𝑂 (1) . The
concept was introduced by Atserias and Bonet [AB04], who further showed that this is equivalent to 𝑆 being
simulated by a system𝑄 that is itself automatable. Despite the fact that weak automatability has been studied from
several perspectives, e.g. [AM11; HP11; BPT14], establishing whether weak proof systems—such as Resolution—
are weakly automatable remains one of the main open problems in the area. It is straightforward to extend the
notion of weak automatability to the quantum setting.

Weak automatability is closely related to feasible interpolation. We recall this connection in its classical form
and then move to the quantum setting.
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Definition 3.5 (Feasible interpolation [Kra97; Pud97]). We say that a proof system 𝑆 has the feasible interpolation
property if there exists a polynomial-time computable function 𝐼 such that for every tautological split formula
𝜑 (𝑥,𝑦, 𝑧) = 𝛼 (𝑥, 𝑧) ∨ 𝛽 (𝑧,𝑦), whenever a proof 𝜋 in 𝑆 derives 𝜑 in size 𝑠 , 𝐼 (𝜋) produces an interpolant circuit 𝐶𝜑

of size 𝑠𝑂 (1) that takes as input an assignment 𝜌 to the 𝑧-variables and such that

𝐶𝜑 (𝜌) =
{

0 only if 𝛼 (𝑥, 𝜌) is a tautology
1 only if 𝛽 (𝜌,𝑦) is a tautology

indicating which side of the conjunction is tautological.

In [BPR00] the following observation relating (weak) automatability and feasible interpolation was attributed
to Impagliazzo. We refer to it as Impagliazzo’s observation.

Proposition 3.6 (Impagliazzo’s observation [BPR00, Thm. 1.1]). If a proof system is weakly automatable and
closed under restrictions, then it admits feasible interpolation.

Impagliazzo’s observation is useful contrapositively: to rule out (weak) automatability it suffices to rule out
feasible interpolation, as done in [KP98] and [BPR00]. We outline this strategy further in Section 4, where we
instantiate it together with our cryptographic assumption.

To use feasible inerpolation in our setting, we suitably adapt the definition to the quantum world.

Definition 3.7 (Quantum feasible interpolation). We say that a proof system 𝑆 has the quantum feasible
interpolation property if there exists a polynomial-time computable function 𝐼 such that, for every tautological
split formula 𝜑 (𝑥,𝑦, 𝑧) = 𝛼 (𝑥, 𝑧) ∨ 𝛽 (𝑧,𝑦), whenever a proof 𝜋 derives 𝜑 in 𝑆 in size 𝑠 , 𝐼 (𝜋) prints the description
of a quantum interpolant circuit 𝐶𝜑 of size 𝑠𝑂 (1) as in Definition 3.5 with probability at least 2/3. If the circuit is
instead randomized, we call this property random feasible interpolation.

Interestingly, feasible interpolation is not affected by moving from classical automatability to randomized
automatability. This is essentially folklore, but we reprove it for the sake of completeness.

Proposition 3.8. If a proof system 𝑆 is weakly random automatable and closed under restrictions, then it has
feasible interpolation by deterministic Boolean circuits.

Proof. The proof is essentially the same as the original proof in [BPR00], except for having to take randomness
into account. Suppose 𝑅 is a probabilistic automating algorithm for 𝑆 . By Proposition 3.4.(ii), we can instead
think of a family of randomized circuits {𝐶𝑛,𝑠 }𝑛,𝑠∈N that, for some fixed constant 𝑐 , outputs proofs of size 𝑠𝑐

when a proof of size 𝑠 exists. Furthermore, let 𝑑 be the constant in the exponent that bounds the blow-up in size
happening in the closure under restrictions. Given a split formula 𝜑 = 𝛼 ∨ 𝛽 , we want to obtain an interpolant
circuit 𝐶𝜑 .

Use the automating algorithm to find some proof of 𝜑 . Let 𝑠0 be the size of such a proof. We first show
that it is possible to extract a polynomial-size randomized circuit that computes the interpolant with one-sided
error. Consider the circuit that takes as input the restriction 𝜌 together with some random bits and proceeds to
compute 𝐶 |𝛼 |,𝑠𝑑0

(𝛼↾𝜌 , 𝑟 ). If this circuit finds a proof of 𝛼↾𝜌 and it is checked to be correct, we output 0; else, we
output 1. We claim that for at least 2/3 choices of 𝑟 , this circuit is a correct interpolant (and, in fact, whenever it
outputs 0, it is always correct). First, note that if we output 0 it is because a proof of 𝛼↾𝜌 was found, in which
case it is correct to say that 𝛼↾𝜌 is a tautology. Otherwise, we will always output 1. The only problematic case is
when the circuit outputs 1 while ¬𝛽↾𝜌 is satisfiable. If such was the case, then let 𝜎 be a satisfying assignment to
the 𝑧-variables such that ¬𝛽↾𝜌,𝜎 is satisfied. Since 𝑆 can prove 𝜑 in size 𝑠0 and 𝑆 is closed under restrictions, we
know that 𝑆 can prove 𝜑↾𝜌,𝜎 in size 𝑠𝑑0 , and this proof must clearly be deriving 𝛼↾𝜌,𝜎 = 𝛼↾𝜌 . Since 𝑠𝑐𝑑0 ≥ 𝑠𝑑0 , for a
“good” choice of 𝑟 the circuit 𝐶 |𝛼 |,𝑠𝑑0

(𝛼↾𝜌 , 𝑟 ) would have found such a proof, so the only reason why we could
have output 1 is that we chose a bad 𝑟 . But this of course only happens with probability at most 1/3. So this
randomized circuit interpolates 𝜑 , makes only one-sided error, and has size polynomial in the shortest proof.

We now replicate the strategy used in Adleman’s theorem (BPP ⊆ P/poly) to show that in fact randomness
is not needed in the circuit. One can follow here the standard argument as presented, for example, in [AB09,
Thm. 7.15]: given the interpolant circuit 𝐹𝜑 , perform error reduction and then argue that there must be a string
of random bits that is “good” for all inputs of the same size. The circuit no longer makes mistakes and computes
𝑓𝜑 as desired. □
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Remark 3.9 (Constructive feasible interpolation). Our definition of feasible interpolation deviates from the one
given in standard texts like that of Krajíček [Kra19], and follows instead the one given by Pudlák [Pud03], who
imposes the condition that the interpolant circuit must be constructed from the given proof in polynomial time.
Note that even if we adopted the non-constructive definition, the kind of feasible interpolation obtained by the
construction above achieves this property anyway.

The constructivity requirement is useful to obtain a sort of converse of Impagliazzo’s observation: if a
propositional proof system has uniform polynomial-size proofs of its reflection principle, then it is weakly
automatable (see [Pud03, Prop. 3.6]).

Since randomness does not buy us anything when it comes to proof search, all hardness results immediately
transfer to the randomized setting. In particular, for every proof system 𝑆 simulating TC0-Frege, 𝑆 is not weakly
random automatable unless Blum integers can be factored by polynomial-size randomized circuits. For weak proof
systems where automatability is known to be NP-hard, the systems cannot be automatable unless NP ⊆ BPP.

When moving to the quantum setting, unfortunately, we do not know of any way to get a deterministic
circuit for the interpolant. Instead, we have the following natural version of Impagliazzo’s observation.

Proposition 3.10. If a proof system is quantum automatable and closed under restrictions, then it admits feasible
interpolation by quantum circuits.

Proof. The proof follows the argument in Proposition 3.8, except we can no longer apply the final step to
get rid of quantumness. The interpolant now is a quantum circuit, since it is simulating the quantum circuit
𝐶 |𝛼 |,𝑠𝑑0

(𝛼↾𝜌 ). □

4 TC0
-Frege is hard to quantum automate

The quantum version of Impagliazzo’s observation (Proposition 3.10) is the main tool needed for our hardness
results, which we are now ready to state formally.

Theorem 4.1 (Main theorem). Let 𝑆 be a proof system simulating TC0-Frege. If 𝑆 is weakly quantum automatable,
then the LWE assumption fails.

We then extend the result to AC0-Frege under a stronger assumption. This is done by applying the fact that
TC0-Frege proofs can be translated into AC0-Frege proofs of subexponential size (see, for example, Theorems
2.5.6 and 18.7.3 in [Kra19] or the original work on the non-automatability of AC0-Frege [BDG+04]).

Corollary 4.2. Let 𝑆 be a proof system simulating AC0-Frege. If 𝑆 is weakly quantum automatable, then the LWE
assumption is broken by a quantum algorithm running in time 2𝑛

𝑜 (1)
.

We devote the rest of the paper to formally proving Theorem 4.1.
Suppose ℎ : {0, 1}𝑛 → {0, 1}𝑛 is an injective and secure one-way function. Let 𝑥 , 𝑦 and 𝑧 denote variables

ranging over {0, 1}𝑛 and assume that TC0-Frege is able to state and refute efficiently the following unsatisfiable
formula,

(ℎ(𝑥) = 𝑧 ∧ 𝑥1 = 0) ∧ (ℎ(𝑦) = 𝑧 ∧ 𝑦1 = 1) ,

where 𝑥1, 𝑦1 are respectively the first bit of 𝑥 and 𝑦. The unsatisfiability follows precisely from the fact that ℎ is
injective, and hence every output has a unique preimage.

If TC0-Frege admits feasible interpolation, we are guaranteed the existence of a small circuit 𝐶 (𝑧) such that

𝐶 (𝑧) =
{

0 if ℎ(𝑥) = 𝑧 ∧ 𝑥1 = 0 is unsatisfiable
1 if ℎ(𝑦) = 𝑧 ∧ 𝑦1 = 1 is unsatisfiable

meaning that𝐶 is able to invert one bit of 𝑧. Since every output has a unique preimage, we can iterate the process
to get the entire input string. This contradicts the assumption that ℎ is one-way.

In order to instantiate the proof strategy to rule out quantum feasible interpolation, we now need a candidate
one-way function that is injective and conjectured to be post-quantum secure and for which injectivity can
be proven inside the proof system. Unfortunately, to the best of our knowledge, no such candidate function
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is currently known, or not with enough security guarantees2. Alternatively, we may use other cryptographic
objects that do achieve some form of injectivity, such as bit commitments, but the formalization of the latter does
not seem simpler than the approach we follow instead. We now explain how we avoid this issue.

The most reliable post-quantum cryptographic assumptions have their security based on worst-case reductions
to lattice problems conjectured to be hard. This is the case of the Learning with Errors framework [Reg09], on
which we base the security of the following class of candidate one-way functions. For these functions, as well as
the basic properties of them that we employ, we follow the treatment of Micciancio [Mic11]. We include the
details for the proof complexity readers, who may not be familiar with these constructions.

Definition 4.3 (The candidate functions 𝑓𝐴). Let 𝑚 = 𝑛𝑂 (1) , 𝑞 ≤ 2𝑛
𝑂 (1)

, and 𝑐 = 𝛼𝑞/
√
𝑛, where 𝛼 ∈ [0, 1]. For

every matrix 𝐴 ∈ Z𝑚×𝑛
𝑞 , we define the function 𝑓𝐴 : Z𝑛𝑞 × {𝜀 ∈ Z𝑚𝑞 : |𝜀 | ≤ 10𝑐

√
𝑚𝑛} → Z𝑚𝑞 as

𝑓𝐴 (𝑠, 𝜀) B (𝐴𝑠 + 𝜀) mod 𝑞 .

At this point, we would like to show inside TC0-Frege that the conjunction

(𝑓𝐴 (𝑥) = 𝑧 ∧ 𝑥1 = 0) ∧ (𝑓𝐴 (𝑦) = 𝑧 ∧ 𝑦1 = 1) (1)

is a contradiction, where 𝐴 is represented by free variables and 𝑥1 and 𝑦1 refer to the first bits of 𝑥 and 𝑦.
Unfortunately, the problem concerning injectivity mentioned above remains. The formula is not necessarily a
contradiction, since for some choices of 𝐴, 𝑓𝐴 is not injective. We can show, however, that with high probability
over the choice of 𝐴, the function 𝑓𝐴 will satisfy two conditions that imply injectivity. Namely, 𝐴 will be full rank
and the shortest vector in the 𝑞-ary lattice spanned by 𝐴 will be large enough.

The following proposition, which captures this idea, is standard. We reprove it here for the sake of complete-
ness, since we shall formalize part of it inside the proof systems later.

Proposition 4.4. Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛 and 𝑞 ≥ 𝑛5. With high probability over the choice of 𝐴 ∈ Z𝑚×𝑛
𝑞 ,

rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚. Furthermore, when these hold, the function 𝑓𝐴 is injective.

Proof. From Lemma 2.4.i we get that Pr𝐴∼U(Z𝑚×𝑛
𝑞 ) [rank(𝐴) < 𝑛] ≤ 𝑛/𝑞𝑚−𝑛+1 . By Lemma 2.4.ii we can see that

Pr
𝐴∼U(Z𝑚×𝑛

𝑞 )
[𝜆1 (L(𝐴)) ≤ 20𝑐

√
𝑚𝑛 | rank(𝐴) = 𝑛] ≤ (40𝑐

√
𝑚𝑛 + 1)𝑚

𝑞𝑚−2𝑛−1 .

The probability that a random 𝐴 does not satify the conditions in the statement is at most the sum of the two
probabilities above, which are both negligible for our choice of𝑚 and 𝑞.

For injectivity, suppose for contradiction that there exist 𝑥, 𝑥 ′, 𝜀, 𝜀′, with either 𝑥 ≠ 𝑥 ′ or 𝜀 ≠ 𝜀′, causing a
collision 𝑓𝐴 (𝑥, 𝜀) = 𝐴𝑥 + 𝜀 = 𝐴𝑥 ′ + 𝜀′ = 𝑓𝐴 (𝑥 ′, 𝜀′). We have two cases.

(a) If 𝜀 = 𝜀′, then the collision happens if and only if rank(𝐴) < 𝑛, which contradicts the assumption.

(b) Suppose that 𝜀 ≠ 𝜀′. We have that 𝜀 − 𝜀′ = 𝐴(𝑥 ′ − 𝑥). Since the norm of 𝜀 − 𝜀′ is at most 20𝑐
√
𝑛𝑚, by

transitivity we have that the length of 𝐴(𝑥 ′ − 𝑥) is bounded by the same quantity. However, the latter
belongs to the lattice and therefore we obtain a contradiction. □

Luckily for us, these two conditions are succinctly certifiable! Indeed, to certify that the matrix 𝐴 is full
rank we may provide a left-inverse 𝐴−1

𝐿
such that 𝐴−1

𝐿
𝐴 = 𝐼𝑛 . Unfortunately, we cannot guarantee that all

injective 𝑓𝐴 have simple certificates of the second property, 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚. Nevertheless, we show in

Section 4.2 that almost all of them do. These certificates take the form of sets𝑊 = {𝑤1, . . . ,𝑤𝑚} ⊆ Δ∗
𝑞 (𝐴) of short

linearly independent vectors in the dual of the 𝑞-ary lattice. We prove—using the left inequality of Banaszczyk’s
Transference Theorem—that such a set suffices to certify the second property, and then show—using the right
side of Banaszczyk’s Transference Theorem— that the certificate𝑊 exists with high probability.

2In a previous version of this work we formalized the injectivity of several group-based post-quantum cryptographic assumptions, such
as MOBS [RS21], as well as variants of supersingular isogeny-based Diffie-Hellman protocols, which unfortunately all happen to be now
broken more or less efficiently.
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Definition 4.5 (Certificate of injectivity). A certificate of injectivity for the function 𝑓𝐴, with 𝐴 ∈ Z𝑚×𝑛
𝑞 , is a pair

(𝐴−1
𝐿
,𝑊 ) such that 𝐴−1

𝐿
is a left-inverse so that 𝐴−1

𝐿
𝐴 = 𝐼𝑛 , and𝑊 = {𝑤1, . . . ,𝑤𝑚} ⊆ Δ∗

𝑞 (𝐴) is a set of𝑚 linearly
independent vectors such that max𝑖∈[𝑚] | |𝑤𝑖 | | < 1/20𝑐

√
𝑛𝑚.

Proposition 4.6. Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛, 𝑞 = 𝑛10, and 𝐴 ∈ Z𝑚×𝑛
𝑞 . The following hold:

(i) if there is a certificate of injectivity (𝐴−1
𝐿
,𝑊 ) for 𝑓𝐴, then 𝑓𝐴 is injective;

(ii) if rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚, then there exists a certificate of injectivity for 𝑓𝐴;

(iii) with high probability over the choice of 𝐴, rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚.

Observe that given a certificate (𝐴−1
𝐿
,𝑊 ), verifying its correctness is a rather simple task: it is sufficient check

that 𝐴−1
𝐿
𝐴 = 𝐼𝑛 , to verify that𝑊 is a set of linearly independent vectors in Δ∗

𝑞 (𝐴), and finally to ensure that the
vectors in𝑊 are small enough.

Let us return to the propositional system. We denote by Inj(𝑓𝐴) the propositional formula encoding that
𝑓𝐴 is injective. From this formula, TC0-Frege can derive that (1) is a contradiction. However, Inj(𝑓𝐴) is false if
we leave 𝐴 as free variables. We instead prove Inj(𝑓𝐴0 ) for concrete injective 𝑓𝐴0 , where 𝐴0 is hardwired. The
concrete 𝑓𝐴0 for which we do it are the ones that admit a certificate of injectivity.

Essentially, we formalize inside TC0-Frege that a certificate of injectivity implies injectivity. That is,

TC0-Frege ⊢ Cert(𝐶𝐴) → Inj(𝑓𝐴) , (2)

where Cert(𝐶𝐴) encodes that𝐶𝐴 is a correct certificate for 𝑓𝐴. Here𝐶𝐴 and 𝐴 are free variables. This implication
is precisely Proposition 4.6.i above. The proof inside the system is carried out in Section 4.3.

Now, given a concrete certificate 𝐶𝐴0 for 𝑓𝐴0 , the formula Cert(𝐶𝐴0 ) is derivable inside TC0-Frege, which
amounts to the system verifying the certificate’s correctness. From this, TC0-Frege proves Inj(𝑓𝐴0 ).

The rest of this section completes the missing parts in the proof. Section 4.1 sketches the known fact that 𝑓𝐴
is worst-case one-way based on the hardness of Learning with Errors, while Section 4.2 proves Proposition 4.6
showing the existence of certificates. We remark that the arguments and techniques are standard in cryptography
and readers familiar with the area might want to skip them. We include them for the sake of completeness and to
cater for the proof complexity reader that may have never come across these ideas before, and we refer to standard
texts like [Mic11] for further details. Finally, Section 4.3 formalizes the certificate-to-injectivity implication
above inside the theory LAQ, which propositionally translates into TC0-Frege. Section 4.4 reconstructs the final
argument.

4.1 Security of 𝑓𝐴

The functions in {𝑓𝐴}𝐴∈Z𝑚×𝑛
𝑞

very closely resemble the standard Learning with Errors functions, the only difference
being that we have set a maximum value on the magnitude of the error vectors and allowed these to be chosen
as a uniform part of the input (instead of being sampled from a Gaussian distribution). We now observe that
inverting these functions allows us to invert LWE with high probability over the choice of the error vector.

Lemma 4.7 ([Mic11]). Suppose there exists an algorithm 𝐵 taking as input 𝐴 ∈ Z𝑚×𝑛
𝑞 and a string 𝑧 and outputting

a preimage in 𝑓 −1
𝐴

(𝑧) with probability 𝑝 . Then, LWE can be broken with probability 0.99𝑝 over the choice of the
error vector 𝜀 and the internal randomness of 𝐵.

Proof. It suffices to show that with high probability, the error vectors in the standard Learning with Errors
functions are bounded as in our definition of 𝑓𝐴, and thus the same inverter for 𝑓𝐴 will also work for most of the
original LWE instances. This follows from a standard Gaussian tail bound. Thus, if we are able to invert 𝑓𝐴 on
all outputs with probability 𝑝 , then we are able to invert its corresponding LWE function with probability, say,
0.99𝑝 over the choice of 𝜀. □

Note that it is in fact possible to invert with all but negligible probability, since finding a vector whose norm
is far above the expectation with high probability requires that several independently sampled coordinates all
return values much larger than the expected one. For simplicity, we chose to prove a weaker result which suffices
for our applications.
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4.2 Existence of certificates of injectivity: Proof of Proposition 4.6

This section proves the three statements of Proposition 4.6.

Proposition 4.6.i (Correctness of certificates). If there is a certificate of injectivity (𝐴−1
𝐿
,𝑊 ) for 𝑓𝐴, then rank(𝐴) =

𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐
√
𝑛𝑚.

Proof. As discussed in the proof of Proposition 4.4, 𝑓𝐴 is injective if and only if both rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) >
20𝑐

√
𝑚𝑛. By elementary linear algebra, rank(𝐴) = 𝑛 if and only if there exists a 𝐴−1

𝐿
. As previously observed

we know that 𝜆1 (Δ𝑞 (𝐴)) = min(𝑞, 𝜆1 (L(𝐴))) and since 20𝑐
√
𝑚𝑛 ≤ 𝑞/𝑚, therefore it suffices to show that the

existence of𝑊 as described above implies that 𝜆1 (Δ𝑞 (𝐴)) > 20𝑐
√
𝑚𝑛.

Because it is a 𝑞-ary lattice we known that rank(Δ𝑞 (𝐴)) = 𝑚. By rearranging the left inequality of the
Transference Theorem for rank-𝑚 lattices, we get that 𝜆1 (Δ𝑞 (𝐴)) ≥ 1/𝜆𝑚 (Δ∗

𝑞 (𝐴)). By the definition of𝑊 , we
conclude that 𝜆𝑚 (L∗) < 1/20𝑐

√
𝑛𝑚, which implies that 𝜆1 (L𝑞 (𝐴)) = 𝜆1 (Δ𝑞 (𝐴)) > 20𝑐

√
𝑛𝑚. □

Proposition 4.6.ii (Conditional existence of certificates). If rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚, then there

exists a certificate of injectivity for 𝑓𝐴.

Proof. Since we assumed that rank(𝐴) = 𝑛, there exists a left inverse 𝐴−1
𝐿

for 𝐴. It therefore suffices to show that
if rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐

√
𝑛𝑚, then there exists a set of vectors𝑊 satisfying the conditions above.

By the right inequality of the Transference Theorem for rank-𝑚 lattices, we get that 𝜆𝑚 (Δ∗
𝑞 (𝐴)) ≤ 𝑚/𝜆1 (Δ𝑞 (𝐴)).

Since 𝜆1 (L𝑞 (𝐴)) > 20𝑚𝑐
√
𝑛𝑚 ≤ 𝑞, and 𝜆1 (Δ𝑞 (𝐴)) = min(𝑞, 𝜆1 (L𝑞 (𝐴))) = 𝜆1 (L𝑞 (𝐴)) there must exist a set of

𝑚 linearly independent vectors in Δ∗
𝑞 (𝐴), such that max𝑖∈[𝑚] | |𝑤𝑖 | | < 1/20𝑐

√
𝑛𝑚. □

Proposition 4.6.iii (Existence of certificates with high probability). Let 𝑛 ∈ N,𝑚 = 𝑛 log𝑛, 𝑞 ≥ 𝑛5, 𝑐 ≤
√
𝑛𝑚/40

and 𝐴 ∈ Z𝑚×𝑛
𝑞 be sampled uniformly at random. The probability that rank(𝐴) = 𝑛 and 𝜆1 (L𝑞 (𝐴)) > 20𝑐𝑚

√
𝑛𝑚 is

at least
1 − 𝑛

𝑞𝑚−𝑛+1 −𝑚3𝑚−(𝑚−2𝑛−1) log𝑚 𝑞 .

This probability is greater than exponentially close to 1 for our choice of 𝑞 and𝑚.

Proof. For the following equations we define Eshort to be the event that 𝜆1 (L𝑞 (𝐴)) ≤ 20𝑐𝑚
√
𝑛𝑚.

Pr
𝐴
[rank(𝐴) ≠ 𝑛 ∨ Eshort] = Pr

𝐴
[rank(𝐴) ≠ 𝑛] + Pr

𝐴
[Eshort ∧ rank(𝐴) = 𝑛]

≤ Pr
𝐴
[rank(𝐴) ≠ 𝑛] + Pr

𝐴
[Eshort | rank(𝐴) = 𝑛] .

By Lemma 2.4.i, we know that Pr𝐴 [rank(𝐴) ≠ 𝑛] ≤ 𝑛/𝑞𝑚−𝑛+1, and by the second point of Lemma 2.4.ii, we
have that

Pr[Eshort | rank(𝐴) = 𝑛] ≤ (40𝑚𝑐
√
𝑚𝑛)𝑚

𝑞𝑚−2𝑛−1 ≤ (𝑚2𝑛)𝑚
𝑞𝑚−2𝑛−1 ≤ 𝑚3𝑚

𝑚 (𝑚−2𝑛−1) log𝑚 𝑞
=𝑚3𝑚−(𝑚−2𝑛−1) log𝑚 𝑞 .

□

4.3 Formalization

At this point, the only thing left is the formalization of the implication Cert(𝐶𝐴) → Inj(𝑓𝐴) inside the proposi-
tional system. Since this is rather cumbersome, we work instead in the more convenient theory LA of linear
algebra of Soltys and Cook [SC04]. The theory, however, is field-independent, which means we cannot state
or prove properties about the ordering of the rationals, which is needed in our arguments. Furthermore, we
sometimes use the fact that certain matrices are over the integers, so we must be able to identify certain elements
as integers. To solve this, we introduce a conservative extension of the theory, called LAQ, which assumes the
underlying field to be Q.

13



4.3.1 The conservative extension LAQ

On top of the exiting symbols of the language of LA, we have two new predicate symbols int and <Q. The symbol
<Q, which we overload onto < in what follows, is intended to represent the usual ordering relation over the
rationals. As usual, we write 𝑥 ≤ 𝑦 to mean 𝑥 < 𝑦 ∨ 𝑥 = 𝑦. Recall that equality of field elements was a symbol in
the base theory LA. The int predicate, applied to a field element 𝑞, written int(𝑞), is supposed to be true whenever
the rational 𝑞 is an integer.

We extend the axiom-set of LA with axioms for the new symbols, as follows. Recall that the original axioms
of LA are listed in Appendix A.1.

Axioms for int

(Int1) int(𝑥) ∧ int(𝑦) → int(𝑥 + 𝑦)
(Int2) int(𝑥) ∧ int(𝑦) → int(𝑥 · 𝑦)
(Int3) int(𝑥) ∧ 0 < 𝑥 → 1 ≤ 𝑥

Axioms for <Q

(Ord1) 𝑥 ≤ 𝑥 ∧ ¬(𝑥 < 𝑥)
(Ord2) 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑥 → 𝑥 = 𝑦

(Ord3) 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧

(Ord4) 𝑥 ≤ 𝑦, 𝑧 ≤ 𝑤 → 𝑥 + 𝑧 ≤ 𝑦 +𝑤

It might seem that these axioms are not enough to fix a reasonable interpretation of the symbols. Indeed, the
axioms for int only really force that addition and multiplication are closed under this predicate and they do not
identify Z as a substructure of Q. The reason this is not an issue is that we are only interested in LAQ for its
propositional translation. For our purposes, these axioms are the only ones we need to prove the required claims
about lattices, and once we translate to the propositional setting, the symbols will take the standard intended
interpretation, so it does not matter that these are underspecified in the theory.

It is not hard to show that theorems of LAQ admit succinct TC0-Frege proofs. Showing this requires extending
the propositional translation in [SC04] to include the new symbols and axioms. We do this in Appendix A.2.

4.3.2 Formalization of the proofs

We are ready to present the formal proofs needed inside our theory. In what follows, LA_._ stands for the
corresponding axiom in Appendix A.1.

We start by formalizing inside LAQ the classical Cauchy-Schwartz inequality, which is later needed in one of
the proofs.

Lemma 4.8 (Cauchy-Schwartz in LAQ). The theory LAQ proves that for every 𝑢, 𝑣 ∈ Q𝑛 , ⟨𝑢, 𝑣⟩2 ≤ ⟨𝑢,𝑢⟩ · ⟨𝑣, 𝑣⟩.

Proof. We show that LAQ can derive the following equality:

1
⟨𝑣, 𝑣⟩ ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣)⟩ = ⟨𝑢,𝑢⟩⟨𝑣, 𝑣⟩ − ⟨𝑢, 𝑣⟩2 . (3)

We do this explicitly by deriving the following chain of equalities:

1
⟨𝑣, 𝑣⟩ ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣)⟩ = (LA7.b)

1
⟨𝑣, 𝑣⟩ (⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (⟨𝑣, 𝑣⟩𝑢)⟩ + ⟨(⟨𝑣, 𝑣⟩𝑢 − ⟨𝑢, 𝑣⟩𝑣), (−⟨𝑢, 𝑣⟩𝑣)⟩) = (LA7.b + LA7.c + LA7.a)

1
⟨𝑣, 𝑣⟩ (⟨𝑣, 𝑣⟩

2⟨𝑢,𝑢⟩ − ⟨𝑣, 𝑣⟩⟨𝑣,𝑢⟩2) = (LA7.c)

(⟨𝑣, 𝑣⟩⟨𝑢,𝑢⟩ − (⟨𝑣,𝑢⟩2)

Observe that the left-hand side of Equation (3) is positive and LAQ can derive this fact since squares are
positive in this theory. Therefore, the right-hand side of Equation (3) is positive as well. From this the inequality
follows. □
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The other technical component needed in the final proof is a weakening of the lower bound in Banaszczyk’s
Transference Theorem (see Theorem 2.3). Informally, we need to prove that for every 𝐴 ∈ Q𝑚×𝑛 , every non-zero
vector 𝑣 ∈ L(𝐴) and any set of linearly independent vectors𝑊 = {𝑤1, . . . ,𝑤𝑛} ⊆ L∗ (𝐴), ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1.

In order for LAQ to process the conditions of the theorem, we provide certificate-like objects ensuring all the
different hypotheses. For example, when we quantify over a vector 𝑣 belonging to a lattice L(𝐴), we provide the
vector of coefficients 𝑐𝑣 such that 𝐴𝑐𝑣 = 𝑣 . Note as well that when we quantify over matrices with elements in Z,
we are using the int predicate under the hood to enforce the entries to be integers.

Lemma 4.9 (Banaszczyk’s left inequality in LAQ). The theory LAQ proves the following implication. Let 𝐴 ∈ Z𝑚×𝑛 ,
𝐵 ∈ Q𝑛×𝑛 , 𝑣 ∈ Q𝑛 , 𝑐𝑣 ∈ Z𝑚 ,𝑊 = [𝑤1 | . . . |𝑤𝑛] ∈ Q𝑚×𝑛 , 𝑐𝑊 = [𝑐𝑤1 | · · · | 𝑐𝑤𝑛

] ∈ Z𝑚×𝑛 ,𝑊 ′ ∈ Q𝑚×𝑛 fulfilling the
following conditions:

1. the vector 𝑣 is non-zero, 𝑣 ≠ 0𝑛 ;

2. the vector 𝑣 belongs to the lattice L(𝐴), 𝑣 = 𝐴𝑐𝑣 ;

3. the vectors in𝑊 belong to the dual lattice3 L∗ (𝐴), 𝑤𝑖 = 𝐴𝐵𝑐𝑤𝑖
for all 𝑖 ∈ [𝑛];

4. (𝐴⊺𝐴)𝐵 = 𝐼𝑛 ;

5. the vectors in𝑊 are linearly independent,𝑊 ′𝑊 ⊺ = 𝐼𝑛 .

Then, for some 𝑖 ∈ [𝑛], ⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩ ≥ 1.

Proof. The proof has two steps. First, we show that for all 𝑖 ∈ [𝑛], ⟨𝑣,𝑤𝑖⟩ ∈ Z. To do this we use the following
chain of equalities, where 𝑤 is some arbitrary column 𝑤𝑖 of𝑊 , and where the comments on the side refer to
either axioms of LAQ or the assumptions in the statement of the lemma:

⟨𝑣,𝑤⟩ = ⟨𝐴𝑐𝑣, 𝐴𝐵𝑐𝑤⟩ (by ass. 2 and 3)

= 𝑐
⊺
𝑣 𝐴
⊺𝐴𝐵𝑐𝑤 (by def. of dot product)

= 𝑐
⊺
𝑣 (𝐴⊺𝐴)𝐵𝑐𝑤 (by associativity, LA5.i)

= 𝑐
⊺
𝑣 𝑐𝑤 . (by ass. 4)

By assumption, the factors of 𝑐⊺𝑣 𝑐𝑤 have integer entries, and by the closure under integer multiplication (Int2),
we deduce that for all 𝑖 ∈ [𝑛], ⟨𝑣,𝑤𝑖⟩ ∈ Z.

In the second step of the proof, we show that there is 𝑗 ∈ [𝑛] such that ⟨𝑣,𝑤𝑖⟩ ≠ 0. We consider the vector
𝑠 B𝑊 ⊺𝑣 . Note that by definition, the 𝑖-th entry of 𝑠 is ⟨𝑤𝑖 , 𝑣⟩. We can multiply both sides by the same matrix
𝑊 ′, leading to𝑊 ′𝑠 =𝑊 ′𝑊 ⊺𝑣 . Using associativity (LA5.i), assumption (5) and properties of the identity matrix
(LA5.f), we get that𝑊 ′𝑠 = 𝑣 . Suppose that for all 𝑗 ∈ [𝑛], ⟨𝑣,𝑤 𝑗 ⟩ = 0. Then, by definition, 𝑠 = 0𝑛 . We can easily
derive (using LA3.a, LA3.c and LA3.i) that𝑊 ′𝑠 = 0 and therefore 𝑣 = 0. This contradicts assumption (5).

We now recall that by axiom (Int3) of LAQ, every non-zero positive integer is greater or equal than 1. This
implies that for some 𝑖 ∈ [𝑛], ⟨𝑣,𝑤 𝑗 ⟩ ≥ 1. Using Cauchy-Schwartz (Lemma 4.8) for this 𝑖 , we get 1 ≤ ⟨𝑣,𝑤𝑖⟩2 ≤
⟨𝑣, 𝑣⟩ · ⟨𝑤𝑖 ,𝑤𝑖⟩. □

We are now ready to prove in LAQ that a correct certificate of injectivity implies the injectivity of 𝑓𝐴.
Informally, we aim to prove that given a certificate of injectivity as in Definition 4.5, the function 𝑓𝐴 is injective.
As before, we need to provide some additional objects together with the certificate to make sure LAQ can reason
about this conditional implication and carry out the verification of the certificate.

Lemma 4.10 (Certificate-implies-injectivity in LAQ). Let 𝐴 ∈ Z𝑚×𝑛 , 𝐵 ∈ Q𝑛×𝑛 , 𝑣1 ∈ Q𝑛 , 𝑐𝑣1 ∈ Z𝑚 , 𝑣2 ∈ Q𝑛 ,
𝑐𝑣2 ∈ Z𝑚 , 𝜀1 ∈ Q𝑛 , 𝜀2 ∈ Q𝑛 ,𝑊 = [𝑤1 | . . . |𝑤𝑛] ∈ Q𝑚×𝑛 , 𝑐𝑊 = [𝑐𝑤1 | · · · | 𝑐𝑤𝑛

] ∈ Z𝑚×𝑛 ,𝑊 ′ ∈ Q𝑚×𝑛 fulfilling the
following conditions:

1. the vector 𝑣1 belongs to the lattice L(𝐴), 𝑣1 = 𝐴𝑐𝑣1 ;

2. the vector 𝑣2 belongs to the lattice L(𝐴), 𝑣2 = 𝐴𝑐𝑣2 ;

3. the vectors 𝑣1 and 𝑣2 are distinct, 𝑣1 ≠ 𝑣2;

3This dual lattice, in fact, admits a closed form for its base, as in Lemma 2.1. In particular, 𝐵 can be seen as (𝐴⊺𝐴)−1.
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4. the vectors in𝑊 belong to the dual lattice L∗ (𝐴), 𝑤𝑖 = 𝐴𝐵𝑐𝑤𝑖
for all 𝑖 ∈ [𝑛];

5. (𝐴⊺𝐴)𝐵 = 𝐼𝑛 ;

6. the vectors in𝑊 are linearly independent,𝑊 ′𝑊 ⊺ = 𝐼𝑛 ;

7. ⟨𝑤𝑖 ,𝑤𝑖⟩ < 1/400𝑐2𝑛𝑚;

8. ⟨𝜀1 − 𝜀2, 𝜀1 − 𝜀2⟩ < 400𝑐2𝑛𝑚.

Then, 𝐴𝑣1 + 𝜀1 ≠ 𝐴𝑣2 + 𝜀2.

Proof. The proof proceeds by contradiction. Suppose that 𝐴𝑣1 + 𝜀1 = 𝐴𝑣2 + 𝜀2, meaning that a collision exists in
the range of 𝑓𝐴. By simple algebraic manipulations in LAQ, we derive that 𝐴(𝑣1 − 𝑣2) = 𝜀2 − 𝜀1. The left-hand
side belongs to the lattice and thus satisfies that ⟨𝐴(𝑣1 − 𝑣2), 𝐴(𝑣1 − 𝑣2)⟩ ≥ 𝜆1 (L(𝐴))2. Applying Lemma 4.9 to
𝑣 := 𝐴(𝑣1 − 𝑣2), we deduce that there exists 𝑖 such that ⟨𝑣, 𝑣⟩ ≥ 1/⟨𝑤𝑖 ,𝑤𝑖⟩. From assumption (7), we have that
⟨𝑣, 𝑣⟩ > 400𝑐2𝑛𝑚. We can now easily obtain a contradiction with assumption (8). □

4.4 Proof of Theorem 4.1

We prove the theorem for TC0-Frege; it then easily follows that the same holds for any stronger system. Suppose
that TC0-Frege is weakly quantum automatable, that is, suppose that 𝑆 is a quantum automatable proof system
simulating TC0-Frege. Let 𝑄 be the quantum algorithm automating 𝑆 . We describe a quantum algorithm 𝑄 ′ that
takes as input a matrix 𝐴 defining a function 𝑓𝐴 as in Definition 4.3 and an output 𝑧 of this function and succeeds
in finding a preimage of 𝑧 with high probability.

For a specific input matrix𝐴0, consider the formula Cert(𝐶𝐴) → Inj(𝑓𝐴), where𝐶 and𝐴 are free variables. In
Lemma 4.10 this implication was proven inside LAQ, and by the propositional translation for LAQ in Theorem A.2
we get and efficient proof inside TC0-Frege, and thus also in 𝑆 . Craft now the formula Inj(𝑓𝐴0 ) for the particular𝐴0
received as input. By Proposition 4.6, for most 𝑓𝐴0 there exists a certificate of injectivity𝐶𝐴0 such that Cert(𝐶𝐴0 )
is true and, in fact, has no free variables. Consider this certificate as a partial restriction and apply it to the
implication above. Since TC0-Frege is closed under restrictions, there must be a polynomial-size proof of Inj(𝑓𝐴0 ),
and so 𝑆 also proves this efficiently. Recall that, as noted in Remark 3.9, Impagliazzo’s observation guarantees
that under the existence of an automating algorithm we get constructive feasible interpolation, so from the proof
of Inj(𝑓𝐴0 ) we can get a circuit that breaks one bit of the given output. By iterating this process we can recover
the entire preimage. This procedure works as long as 𝑓𝐴0 is injective and admits a certificate of injectivity, but by
Proposition 4.6 this is the case with overwhelming probability. Then, by Lemma 4.7, we break LWE and get the
desired conclusion. □
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A The theories LA and LAQ
Appendix A.1 below lists the axioms of the theory LA of linear algebra of [SC04], together with several theorems
proven inside the theory in the original paper. Appendix A.2 proves that the conservative extension LAQ admits
a propositional translation into TC0-Frege.

A.1 Axioms and basic theorems of LA

1. Equality axioms

(a) 𝑥 = 𝑥

(b) 𝑥 = 𝑦 → 𝑦 = 𝑥

(c) (𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧

(d)
∧𝑛

𝑖 (𝑥𝑖 = 𝑦𝑖 ) → 𝑓 (𝑥) = 𝑓 (𝑦)
(e) 𝑖1 = 𝑗1, 𝑖2 = 𝑗2, 𝑖1 ≤ 𝑖2 → 𝑗1 ≤ 𝑗2.

2. Axioms for indices

(a) 𝑖 + 0 = 𝑖

(b) 𝑖 + ( 𝑗 + 1) = (𝑖 + 𝑗) + 1
(c) 𝑖 · ( 𝑗 + 1) = (𝑖 · 𝑗) + 𝑖
(d) 𝑖 + 1 = 𝑗 + 1 → 𝑖 = 𝑗

(e) 𝑖 + 1 ≠ 0
(f) 𝑖 ≤ 𝑖 + 𝑗

(g) 𝑖 ≤ 𝑗, 𝑗 ≤ 𝑖

(h) 𝑖 ≤ 𝑗, 𝑖 + 𝑘 = 𝑗 → ( 𝑗 − 𝑖 = 𝑘)
(i) 𝑖 ≤ 𝑗, 𝑖 + 𝑘 = 𝑗 → (𝑖 ≮ 𝑗 → 𝑗 − 𝑖 = 0)
(j) 𝑗 ≠ 0 → rem(𝑖, 𝑗) < 𝑗

(k) 𝑗 ≠ 0 → 𝑖 = 𝑗 · div(𝑖, 𝑗) + rem(𝑖, 𝑗)
(l) 𝛼 → cond(𝛼, 𝑖, 𝑗) = 𝑖

(m) ¬𝛼 → cond(𝛼, 𝑖, 𝑗) = 𝑗

3. Axioms for field elements

(a) 0 ≠ 1 ∧ 𝑎 + 0 = 𝑎

(b) 𝑎 + (−𝑎) = 0
(c) 1 · 𝑎 = 𝑎

(d) 𝑎 ≠ 0 → 𝑎 · (𝑎−1) = 1
(e) 𝑎 + 𝑏 = 𝑏 + 𝑎

(f) 𝑎 · 𝑏 = 𝑏 · 𝑎
(g) 𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐
(h) 𝑎 · (𝑏 · 𝑐) = (𝑎 · 𝑏) · 𝑐
(i) 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐
(j) 𝛼 → cond(𝛼, 𝑎, 𝑏) = 𝑎

(k) ¬𝛼 → cond(𝛼, 𝑎, 𝑏) = 𝑏

4. Axioms for matrices

(a) (𝑖 = 0 ∨ r(𝐴) < 𝑖 ∨ 𝑗 = 0 ∨ c(𝐴) < 𝑗) →
e(𝐴, 𝑖, 𝑗) = 0

(b) r(𝐴) = 1, c(𝐴) = 1 → Σ(𝐴) = e(𝐴, 1, 1)
(c) c(𝐴) = 1 → 𝜎 (𝐴) = 𝜎 (𝐴⊺)
(d) r(𝐴) = 0 ∨ c(𝐴) = 0 → Σ(𝐴) = 0

5. Theorems for Ring Properties

(a) max(𝑖, 𝑗) = max( 𝑗, 𝑖)
(b) max(𝑖,max( 𝑗, 𝑘)) = max(max(𝑖, 𝑗), 𝑘)
(c) max(𝑖,max( 𝑗, 𝑘)) = max(max(𝑖, 𝑗),max(𝑖, 𝑘))
(d) 𝐴 + 0 = 𝐴

(e) 𝐴 + (−1)𝐴 = 0

(f) 𝐴𝐼 = 𝐴 and 𝐼𝐴 = 𝐴

(g) 𝐴 + 𝐵 = 𝐵 +𝐴

(h) 𝐴 + (𝐵 +𝐶) = (𝐴 + 𝐵) +𝐶
(i) 𝐴(𝐵𝐶) = (𝐴𝐵)𝐶
(j) 𝐴(𝐵 +𝐶) = 𝐴𝐵 +𝐶𝐴
(k) (𝐵 +𝐶)𝐴 = 𝐵𝐴 +𝐶𝐴
(l) Σ0 = 0field

(m) Σ(𝑐𝐴) = 𝑐Σ(𝐴)
(n) Σ(𝐴 + 𝐵) = Σ(𝐴) + Σ(𝐵)
(o) Σ(𝐴) = Σ(𝐴⊺)

6. Theorems for Module Properties

(a) (𝑎 + 𝑏)𝐴 = 𝑎𝐴 + 𝑏𝐴
(b) 𝑎(𝐴 + 𝐵) = 𝑎𝐴 + 𝑎𝐵

(c) (𝑎𝑏)𝐴 = 𝑎(𝑏𝐴)

7. Theorems for Inner Product

(a) 𝐴 · 𝐵 = 𝐵 · 𝐴
(b) 𝐴 · (𝐵 +𝐶) = 𝐴 · 𝐵 +𝐴 ·𝐶
(c) 𝑎𝐴 · 𝐵 = 𝑎(𝐴 · 𝐵)

8. Miscellaneous Theorems

(a) 𝑎(𝐴𝐵) = (𝑎𝐴)𝐵 ∧ (𝑎𝐴)𝐵 = 𝐴(𝑎𝐵)
(b) (𝐴𝐵)⊺ = 𝐵⊺𝐴⊺

(c) 𝐼⊺ = 𝐼

(d) 0⊺ = 0

(e) (𝐴⊺)⊺ = 𝐴
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A.2 The propositional translation for LAQ
We show that theorems of LAQ still have short propositional proofs in TC0-Frege despite the presence of new
symbols and axioms not present in LA.

The first step in the propositional translation is the conversion of LA formulas into propositional ones. The
translation is analogous to the usual propositional translations used elsewhere in bounded arithmetic (see, for
example, [CN10; Kra95]). Let 𝜑 be a formula of LAQ and let 𝜎 be an object assignment that assigns a natural
number to each free index variable occurring in 𝜑 and to each term of the form r(𝐴) and c(𝐴) occurring in 𝜑 . We
denote by 𝑁 the maximum value in the range of 𝜎 . For every variable 𝑞 standing for a rational number in 𝜑 , we
introduce enough Boolean variables to represent 𝑞 as a fraction 𝑎/𝑏, where 𝑎 and 𝑏 are integers represented in
binary. We may assume that 𝑁 is also an upper bound on the binary precision of these integers. We adopt the
convention that denominators are always positive. Note that the number of Boolean variables introduced is at
most polynomial in 𝑁 .

The translation of 𝜑 then proceeds by substituting every function and predicate symbol by the corresponding
TC0 circuit of the appropriate size, which is also at most poly(𝑁 ). It is easy to verify that all the functions and
predicate symbols in LA are computable in TC0, and this is also the case for the extended vocabulary (<Q and
int). For <Q, given 𝑎/𝑏 and 𝑐/𝑑 , we check whether 𝑎𝑐 < 𝑏𝑑 , which only requires operations over the integers.
For int we shall use the circuit computing whether the rational 𝑞 = 𝑎/𝑏 satisfies that MOD(𝑎, 𝑏) = 0. This only
requires the standard remainder function, computable in TC0, plus an equality check. We denote by | |𝜑 | |𝜎 the
propositional formula obtained by carrying out this translation process. The size of | |𝜑 | |𝜎 is again polynomial in
𝑁 .

Now, given an LA proof 𝜋 of a sentence 𝜑 and an object assignment 𝜎 , we translate 𝜋 into a TC0-Frege proof
of | |𝜑 | |𝜎 . It suffices to translate each line in the proof into its corresponding propositional formula and observe
that the required inference steps can be carried out in TC0-Frege. More precisely, the underlying proof system
for LA and LAQ is the sequent calculus, and we may think of TC0-Frege in its sequent calculus formulation,
PTK. Since LA and LAQ formulas are quantifier-free, no derivation rules for quantifiers are present in 𝜋 . Every
inference step of an LA proof matches the corresponding sequent calculus rule of the propositional sequent
calculus. It is also not hard to see that the cut rule is always over a TC0 circuit, since the LAQ formula over which
we cut translates into a TC0 circuit.

The only problem occurs when reaching a leaf in the proof 𝜋 , which corresponds to an axiom of LA or LAQ.
These are not axioms of TC0-Frege and hence require a proof to be appended in the translation. Cook and Soltys
observed that when instantiated over the rationals, all of the axioms of LA are either directly proven or follow
easily from the basic properties of arithmetic proven in [BPR00] inside TC0-Frege. Hence, the only thing left
to complete the propositional translation for LAQ is to provide small TC0-Frege proofs of the new axioms not
present in LA.

Lemma A.1. There are polynomial-size TC0-Frege proofs of the propositional translation of the axioms of LAQ.

Proof. The axioms of LA were handled in the original work of Cook and Soltys (see Theorem 6.3 in [SC04]).
Furthermore, the axioms imposing that <Q is an ordering relation were already proven in [BPR00] as well (these
are precisely the lemmas proven in their Section 7.2). We therefore focus on the translation of the axioms for int.

For the sake of consistency with the previous work of Bonet, Pitassi, and Raz we adopt here the notation [𝑎]𝑏
for the MOD(𝑎, 𝑏) function and div𝑏 (𝑎) for the integer division between 𝑎 and 𝑏. We also reuse the following
lemmas proved by them inside TC0-Frege, where L7._ stands for the corresponding lemma in [BPR00]:

(L7.19) (𝑎 < 𝑏) ∨ (𝑏 < 𝑎) ∨ (𝑎 = 𝑏).
(L7.27) 𝑎 = [𝑎]𝑏 + div𝑏 (𝑎) · 𝑏.

(L7.28) 𝑥 + 𝑦 · 𝑝 = 𝑢 + 𝑣 · 𝑝 ∧ 𝑦 < 𝑣 → 𝑝 ≤ 𝑥 .

(L7.29) [𝑎]𝑏 = [𝑎 + 𝑘 · 𝑏]𝑏 .

We are now ready to write the proofs for the axioms (Int1), (Int2), and (Int3).

(Int1) Let 𝑥 and 𝑦 be represented by the fractions 𝑎/𝑏 and 𝑐/𝑑 respectively. The translation of the axiom

int(𝑥) ∧ int(𝑦) → int(𝑥 + 𝑦)
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yields the propositional formula

[𝑎]𝑏 = 0 ∧ [𝑐]𝑑 = 0 → [𝑎𝑑 + 𝑏𝑐]𝑏𝑑 = 0.

From [𝑎]𝑏 = 0 and [𝑐]𝑑 = 0, L7.27 gives us that 𝑎 = div𝑏 (𝑎) · 𝑏 and 𝑐 = div𝑑 (𝑐) · 𝑑 . Then,

[𝑎𝑑 + 𝑏𝑐]𝑏𝑑 = [div𝑏 (𝑎) · 𝑏︸      ︷︷      ︸
𝑎

· 𝑑 + div𝑑 (𝑐) · 𝑑︸      ︷︷      ︸
𝑐

· 𝑏]𝑏𝑑

= [𝑏𝑑 · (div𝑏 (𝑎) + div𝑑 (𝑐))]𝑏𝑑
= [0]𝑏𝑑
= 0

where the second to last equality follows by applying L7.29.

(Int2) In this case the translation of
int(𝑥) ∧ int(𝑦) → int(𝑥 · 𝑦)

yields the formula
[𝑎]𝑏 = 0 ∧ [𝑐]𝑑 = 0 → [𝑎𝑐]𝑏𝑑 = 0.

We have again that L7.27 gives us that 𝑎 = div𝑏 (𝑎) · 𝑏 and 𝑐 = div𝑑 (𝑐) · 𝑑 . Then,

[𝑎𝑐]𝑏𝑑 = [𝑎𝑐 + (− div𝑏 (𝑎) · div𝑑 (𝑐)) · 𝑏𝑑]𝑏𝑑
= [𝑎𝑐 − div𝑏 (𝑎) · 𝑏︸      ︷︷      ︸

𝑎

· div𝑑 (𝑐) · 𝑑︸      ︷︷      ︸
𝑐

]𝑏𝑑

= [𝑎𝑐 − 𝑎𝑐]𝑏𝑑
= [0]𝑏𝑑
= 0

where the first equality follows again from L7.29.

(Int3) We first write the propositional translation of

int(𝑥) ∧ 0 < 𝑥 → 1 ≤ 𝑥 .

Recall that we adopted the convention that denominators of fractions are always positive, and the
comparator circuit between two rationals 𝑎/𝑏 and 𝑐/𝑑 checks the integer inequality 𝑎𝑐 < 𝑏𝑑 . The
consequent 1 ≤ 𝑥 stands for 1 = 𝑥 ∨ 1 < 𝑥 , which translates as div𝑏 (𝑎) = 1 ∨ 𝑏 < 𝑎 when writing 𝑥 and
𝑎/𝑏. Thus, the formula to prove is

[𝑎]𝑏 = 0 ∧ 0 < 𝑎 → div𝑏 (𝑎) = 1 ∨ 𝑏 < 𝑎.

By L7.19, either 𝑏 < 𝑎, 𝑎 < 𝑏 or 𝑎 = 𝑏. If 𝑏 < 𝑎, we are done. If 𝑎 = 𝑏, using L7.27, it is easy to show that
div𝑎 (𝑎) = 1, since by L7.29,

[𝑎]𝑎 = [0 + 𝑎]𝑎 = [0]𝑎 = 0

and thus
𝑎 = div𝑎 (𝑎) · 𝑎 + [𝑎]𝑎 = div𝑎 (𝑎) · 𝑎.

Since by assumption 0 < 𝑎, we have 𝑎 ≠ 0, so div𝑎 (𝑎) = 1. Then,

div𝑏 (𝑎) = div𝑎 (𝑎) = 1.

Finally, if 𝑎 < 𝑏, we prove that the antecedent of the formula is falsified. We first show that div𝑎 (𝑏) = 0.
Suppose not, then it must be div𝑎 (𝑏) > 0. When taking 𝑥 = 𝑎, 𝑦 = 0, 𝑝 = 𝑏 and 𝑣 = div𝑏 (𝑎) in L7.28
above, we immediately get 𝑏 ≤ 𝑎, contradicting 𝑎 < 𝑏.
Now that we have div𝑏 (𝑎) = 0, by L7.27 we get 𝑎 = [𝑎]𝑏 . But if both [𝑎]𝑏 = 0 and 0 < 𝑎, we get a
contradiction. □
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Theorem A.2 (Propositional translation for LAQ). For every theorem 𝜑 of LAQ and every object assignment 𝜎 , the
propositional formula | |𝜑 | |𝜎 admits polynomial-size TC0-Frege proofs.

Proof. The proof is analogous to Theorem 6.3 in [SC04], except we need to handle the new axioms. By Lemma A.1
above, the translations of the new axioms have short TC0-Frege proofs. This completes the proof. □

B Proof of Proposition 3.4

We prove the equivalence between the machine-based and circuit-based definitions in the three settings.

(i) Classical automatability. For the forward direction, suppose 𝐴 is an automating deterministic Turing
machine. In order to simulate 𝐴 by a circuit, we need to introduce a uniform bound on the running time
of 𝐴. We know 𝐴 runs in time size𝑆 (𝜑)𝑐 for some constant 𝑐 . Consider now the machine 𝐴′ that takes as
input both 𝜑 and a size parameter 𝑠 in unary and runs 𝐴(𝜑) for 𝑠𝑐 steps, and outputs a proof if one was
found, and some other string otherwise. This machine 𝐴′ can be simulated by a uniform circuit family of
size 𝑂 (( |𝜑 | + 𝑠)2𝑐 ), which is still polynomial in |𝜑 | + 𝑠 , and which outputs a proof of size polynomial in 𝑠 if
one exists.
For the backwards direction, assuming a circuit family {𝐶𝑛,𝑠 }𝑛,𝑠∈N, the machine on input 𝜑 simulates
𝐶 |𝜑 |,1 (𝜑), 𝐶 |𝜑 |,2 (𝜑) and so on, checking every time whether the output proof is valid, up to the first value
of 𝑠 for which a valid proof is obtained. This takes time polynomial in size𝑆 (𝜑).

(ii) Randomized automatability. The argument here is similar, except that we have to account for the
equivalence between the bounded expected running time of the machine and the bounded error probability
of the circuits.
For the forward direction, let 𝑅 be a probabilistic machine automating 𝑆 in expected time size𝑆 (𝜑)𝑐 for
some constant 𝑐 . Let 𝑇𝜑 be the random variable that denotes the number of steps 𝑅 takes to find a proof
on input 𝜑 , when 𝜑 does have some proof. We know that E[𝑇𝜑 ] ≤ size𝑆 (𝜑)𝑐 . Consider now the modified
machine 𝑅′ that takes 𝜑 and a size parameter 𝑠 and simulates 𝑅(𝜑) for 𝑘 · (𝑛 + 𝑠)𝑐 steps, for some constant
𝑘 such as 𝑘 = 100. This machine can be turned into a random circuit with 𝑘 · (𝑛 + 𝑠)𝑐 random bits. It just
suffices to argue that for at least 2/3 of the choices for the random bits, the circuit will output a proof
when one exists. Indeed, by Markov’s inequality, the probability that 𝑅′ might not output a proof in time
𝑘 · (𝑛 + 𝑠)𝑐 is just Pr

[
𝑇𝜑 > 𝑘 · E[𝑇𝜑 ]

]
≤ 1/𝑘 , which bounds the error of the circuit as desired.

For the backwards direction, from the sequence {𝐶𝑛,𝑠 }𝑛,𝑠∈N of randomized circuits we get an error-bounded
probabilistic Turing machine 𝑅(𝜑, 𝑠) that first obtains the description of𝐶 |𝜑 |,𝑠 (recall that the circuit family is
uniform) and then simulates𝐶 |𝜑 |,𝑠 (𝜑). This machine 𝑅 always halts after ( |𝜑 | + 𝑠)𝑂 (1) steps, and, whenever
a proof of size 𝑠𝑐 exists, finds one with probability at least 2/3. Now, consider the machine 𝑅′ that takes
as input just the formula 𝜑 and runs 𝑅(𝜑, 1), 𝑅(𝜑, 2), . . . and so on, until a proof is found. For very small
values of 𝑠 the the machine 𝑅 will never find a proof, because none exists. Once we get to values of 𝑠 large
enough such that 𝑠𝑐 ≥ size𝑆 (𝜑), we might still be unlucky and not find a proof when running 𝑅(𝜑, 𝑠), and
move to 𝑅(𝜑, 𝑠 + 1). Note, however, that the number of times we may increments the parameter 𝑠 before a
proof is found follows a geometric distribution, and so the expected number of trials is at most 1/𝑝 , where
𝑝 is the probability of success. Since 𝑝 is at least 2/3, the expected number of times we will increment 𝑠
before a proof is found is at most 3/2. Altogether, the machine 𝑅′ will run in expected time polynomial in
size𝑆 (𝜑).

(iii) Quantum automatability. The proof is identical to (ii). By Yao’s result that quantum circuits can simulate
quantum Turing machines running in time 𝑇 in size 𝑂 (𝑇 2) [Yao93], we get the right transformations
between circuits and machines, and the probability analysis is exactly the same.

□

C Properties of random lattices (Proof of Lemma 2.4)

This section proves the two statements of Lemma 2.4. We start by proving that almost every randomly selected
matrix is full-rank (Lemma 2.4.i). We then prove two technical lemmas. Finally we show that almost every
randomly selected full rank matrix generates a lattice with no short vectors (Lemma 2.4.ii).
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From now on, unless otherwise specified, we consider lattices of the form L𝑞 (𝐴) where 𝐴 ∈ Z𝑚×𝑛
𝑞 and

rank(𝐴) = 𝑛. Note that for any such lattice |L𝑞 (𝐴) | = 𝑞𝑛 .

Proof of Lemma 2.4.i. When selecting a column vector there are 𝑞𝑚 different options. At each step 𝑖 the previously
selected columns span a subspace of Z𝑚𝑞 with 𝑞𝑖−1 elements, meaning that on the 𝑖-th selection the odds of
selecting a linearly dependent vector are only 𝑞𝑖−1/𝑞𝑚 = 1/𝑞𝑚−𝑖+1. For each step 𝑖 , this probability is less than
1/𝑞𝑚−𝑛+1. By union bounding over the 𝑛 opportunities, the probability of ever selecting a linearly dependent
column is less than the sum of these probabilities which in turn is less than 𝑛/𝑞𝑚−𝑛+1. □

Lemma C.1. Let {L𝑞} be the set of all the possible distinct rank-𝑛 lattices in Z𝑚𝑞 . It holds that

|{L𝑞}| =
𝑛−1∏
𝑖=0

(
𝑞𝑚 − 𝑞𝑖

𝑞𝑛 − 𝑞𝑖

)
.

Proof. The cardinality of {L𝑞} is equal to the number of rank 𝑛 bases divided by the number of possible bases
for each given lattice. Formally,

|{L𝑞}| =
|{𝐴| rank(𝐴) = 𝑛}|

|{𝐴′ |L𝑞 (𝐴) = L𝑞 (𝐴′)}| .

We take an algorithmic approach to counting the number of 𝐴 for which rank(𝐴) = 𝑛. To select such an 𝐴, we
first set 𝑎0 equal to one of the 𝑞𝑚 − 1 non-zero points in Z𝑚𝑞 . Then for each subsequent 𝑖 we set 𝑎𝑖 equal to a
point in Z𝑚𝑞 not contained in the rank 𝑖 lattice spanned by (𝑎0, . . . , 𝑎𝑖−1). We know that there are 𝑞𝑖 vectors in
that lattice leaving us with 𝑞𝑚 − 𝑞𝑖 possible choices for 𝑎𝑖 . To avoid double counting the permutations of a given
basis we divide by 𝑛!, concluding that there are

∏𝑛−1
𝑖=0

(
𝑞𝑚 − 𝑞𝑖

)
/𝑛! matrices 𝐴 with rank(𝐴) = 𝑛.

Next, to count the number of possible bases 𝐴′ we first note that any set of 𝑛 linearly independent vectors
in L𝑞 (𝐴) is a basis of L𝑞 (𝐴). Then we follow the same method as above for generating a basis except our
choices are now limited to the 𝑞𝑛 vectors in the lattice. So we end up with a total number of possible bases of∏𝑛−1

𝑖=0
(
𝑞𝑛 − 𝑞𝑖

)
/𝑛!.

If we divide the number of rank-𝑛 bases by the number of bases per lattice we get
∏𝑛−1

𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

)
. □

Lemma C.2. When 𝑞 ≥ 𝑛 ≥ 1, log𝑞 (𝑞 + 1) (𝑛 − 1) ≤ 𝑛.

Proof. Because log𝑞 (𝑞 + 1) is monotonically decreasing it suffices to show that log𝑛 (𝑛 + 1) (𝑛 − 1) ≤ 𝑛. By change
of basis and reordering this is equivalent to proving that

ln(𝑛 + 1)
ln(𝑛) ≤ 𝑛

𝑛 − 1
.

It is well known that
𝑑 (ln(𝑛))

𝑑𝑛
=

1
𝑛
,

which is also monotonically decreasing, meaning that

ln(𝑛 + 1) ≤ ln(𝑛) + 1
1
𝑛
.

Thus,
ln(𝑛 + 1)

ln(𝑛) ≤
ln(𝑛) + 1

𝑛

ln(𝑛) = 1 + 1
𝑛 ln(𝑛) ≤ 1 + 1

𝑛 − 1
=

𝑛

𝑛 − 1
.

□

Proof of Lemma 2.4.ii. Every lattice with a short vector can be specified by a tuple of a lattice of rank 𝑛 − 1 and a
short vector. All vectors with length less than 𝑟 must lie in the region (−𝑟, 𝑟 )𝑚 so we know there are fewer than
(2𝑟 + 1)𝑚 short vectors. Combining this with the number of lattices of rank 𝑛 − 1 from Lemma C.1 we get that

|{L𝑞 (𝐴) | 𝜆1 (L𝑞 (𝐴)) ≤ 𝑟 }| ≤ (2𝑟 + 1)𝑚
𝑛−2∏
𝑖=0

(
𝑞𝑚 − 𝑞𝑖

𝑞𝑛−1 − 𝑞𝑖

)
.
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If we divide this upper bound on the number of lattices with short vectors by the exact count of the number
of total lattices from Lemma C.1 we can see that the fraction of lattices which contain a vector of length less than
𝑟 is less than

(2𝑟 + 1)𝑚 ∏𝑛−2
𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−1−𝑞𝑖

)
∏𝑛−1

𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

) =
(2𝑟 + 1)𝑚
𝑞𝑚−𝑞𝑛−1

𝑞𝑛−𝑞𝑛−1

𝑛−2∏
𝑖=0

(
𝑞𝑚−𝑞𝑖
𝑞𝑛−1−𝑞𝑖

)(
𝑞𝑚−𝑞𝑖
𝑞𝑛−𝑞𝑖

)
= (2𝑟 + 1)𝑚 𝑞𝑛 − 𝑞𝑛−1

𝑞𝑚 − 𝑞𝑛−1

𝑛−2∏
𝑖=0

𝑞𝑛 − 𝑞𝑖

𝑞𝑛−1 − 𝑞𝑖

≤ (2𝑟 + 1)𝑚 𝑞𝑛

𝑞𝑚−1

(
𝑞𝑛 − 𝑞𝑛−2

𝑞𝑛−1 − 𝑞𝑛−2

)𝑛−1

=
(2𝑟 + 1)𝑚
𝑞𝑚−𝑛−1 (𝑞 + 1) (𝑛−1)

=
(2𝑟 + 1)𝑚
𝑞𝑚−𝑛−1 𝑞

log𝑞 (𝑞+1) (𝑛−1)

≤ (2𝑟 + 1)𝑚
𝑞𝑚−2𝑛−1 . (by Lemma C.2)

□
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