Prime Implicant Enumeration via QBF Solvers

Noel Arteche and Montserrat Hermo

University of the Basque Country, Faculty of Computer Science
Manuel Lardizabal 1, 20018 Donostia / San Sebastidn, Spain
{noel.arteche, montserrat.hermo}@ehu.eus

Abstract. We present a simple QBF encoding that can be used together
with incremental calls to a QBF solver to enumerate all the prime im-
plicants of a propositional formula. This is work-in-progress on the use
of quantified Boolean formula solvers to compute prime implicants and
Boolean formula minimization, problems where traditionally only SAT-
based algorithms have been used.

Keywords: Prime implicant - Formula minimization - QBF

1 Introduction

Boolean formula minimization is a well-known problem of big practical appli-
cability, well-researched since the 1950s. Complexity-wise, today we know that
the decisional version of DNF-minimization is 35-complete [6], while the related
problem of deciding whether a certain partial assignment is a prime implicant
was shown to be DP-complete [3].

The existing algorithmic solutions, at least to the extent of our knowledge,
tend to rely on SAT solvers. Today, overcoming the limitations of the classical
Quine-McCluskey algorithm [5], recent approaches like those of Ignatiev et al. [4]
show that it is quite efficient in practice to solve formula simplification and
minimization using SAT solvers for prime implicants/implicate enumeration.

Despite the practical efficiency of these methods, given that the problems
are conjectured to be strictly beyond NP, we believe that using QBF solvers
seems a natural, elegant and straightforward solution to find prime implicants
and minimize formulas.

In this paper, we present incipient work-in-progress directed at an attempt to
compute prime implicants using QBF solvers. Section 2 presents a simple QBF
encoding that captures the notion of prime implicant for a given propositional
formula. In particular, we first present an encoding close to the DP-completeness
of the problem, while Appendix A discusses a formula that is linearly smaller,
but using a harder quantifier prefix. Section 3 discusses how to use this encoding
together with incremental calls to a QBF solver to enumerate all prime impli-
cants of a given formula. Besides, we discuss a possible variation of this encoding,
as well as its limitations. We conclude with a brief outline of the work that is
yet to be conducted.



2 N. Arteche, M. Hermo

2 Encoding Prime Implicants into QBF

In what follows, given a Boolean formula ¢ over variables z1, ..., z,, we think of
a (partial) assignment « directly in the binary representation we later use. That
is, a = (w,a) € {0,1}" x {0,1}", such that bit u; = 1 if and only if variable x;
is left unassigned; else, we read in a; the value assigned to variable z;.

Definition 1 (X-restrictions and extensions). Let ¢ be a Boolean formula
over variables x1,...,x,, let « = (u,a) be a partial assignment to ¢, and let
X CA{z; | u; = 0}. We say an assignment o/ = (¥, @) is an X-restriction of «
whenever u; =1 if x; € X and u; = u; otherwise. If X = {z;}, we simply say
that o/ is an w;-restriction. An extension of a is an assignment o = (0", @)
such that af; = a; whenever u; = 0.

Definition 2 (Implicants and prime implicants). We say that « is an im-
plicant of ¢ if every extension of o makes @ true. An implicant o is prime if
for every X -restriction o’ of a, o' is not an implicant.

For convenience, we often express a partial assignment o = (u,a) as a term
Qp = /\uiZO T; N\ /\m‘,:O &Ly

a;=1 a; =0
Ezample 1. Consider the formula ¢(z,y,2) = (—z Vy) A (y V 2). In this case,
—x Ay is an implicant, for every extension of this partial assignment makes the
formula true. However, it is not prime, for the z-restriction y is an implicant.
The prime implicants of ¢ are in this case y and —x A z.

Crucially, to identify prime implicants it suffices to restrict attention to z-
restrictions.

Proposition 1. An implicant o is prime if and only if no x-restriction of « is
an implicant.

Proof. The forward direction is immediate. For the converse, if « is not prime,
there is an X-restriction o’ that is an implicant. Fix an x € X. The z-restriction
of a is an implicant, for otherwise o’ would not be an implicant in the first
place. a

2.1 Encoding Implicants

Deciding whether a given partial assignment o = (u,a) is an implicant of ¢
is coNP-complete (see Theorem 3.7 in [2]). Accordingly, we can encode this
property into a universal statement.

As discussed, u; is intended to encode whether variable x; is being left unas-
signed. If u; = 0, then x; takes the value stored in a;; otherwise, variable x;
should take any value, and so we set it to a new variable %;, universally quanti-
fied. For every i € [n], we define a new variable v; as v; := (u; — *;) A(—u; — a;)
encoding precisely whether we read the value in a; or not. Then, the QBF

Imp(@,a) = V1 ... V%, @(v1, ..., 0p)

is true if and only if (uw,a) is an implicant of (.



Prime Implicant Enumeration via QBF Solvers 3

2.2 Forcing Implicants to Be Prime

We can now encode what it means for an implicant to be prime. This is, as noted
in Proposition 1, that no z-restriction is an implicant.

Checking this property is in NP. The certificate is a sequence of n variable
assignments, one for every variable, such that if x; was assigned a value according
to a, then the assignment b; = bi1,...,bn is an extension of o that makes ¢
false. Intuitively, what we encode is that for every variable x;, dropping z; from
« is not possible, because we can find an assignment that falsifies the formula.

Therefore, given a formula ¢ and an implicant o = (@, @), we claim that « is
prime if and only if the following formula is true:

Prime(ﬁ, E) = E'bl,l Ce bl,n A Elbn,l e bn,n : /\ U; —> ﬁ(p(th e ,’U.)i’n)
=1

where Wy 5 = (Uj — bi’j) A\ (ﬁuj — aj) if 1 #£ j and Wi,j = bi,i-
Combining this with the formula form the previous section we get that

II(u,a) := Imp(u, a) A Prime(w, a)
encodes the property of being a prime implicant.

Remark 1. Note that IT is the conjunction of a coNP predicate (Imp) and an
NP predicate (Prime). This corresponds tightly to the prime implicant recogni-
tion problem being DP-complete. However, if we allow ourselves more expressive
power in the quantifier prefix, we can rewrite IT as a IT} predicate that is linearly
smaller in n. This alternative encoding is discussed in Appendix A.

3 Prime Implicant Enumeration

Based on the encoding presented above, we can obtain all the prime implicants of
a formula by existentially quantifying IT and incrementally calling a QBF solver
that can extract a certificate for the existential variables at the front. This is
summarised in Algorithm 1.

Algorithm 1 Enumeration of the prime implicants of ¢
II < Ju3a : Imp(u, @) A Prime(u, @)
primes < ()
while QBF-sOLVER(IT) = “SAT” do
a < EXTRACT-CERT(IT)
primes < primes U {a}
IT + Juda : A\ —a¢ A lmp(w, @) A Prime(w, @)
end while
return primes

aEprimes




4 N. Arteche, M. Hermo

Note, however, that in most applications we are not interested in comput-
ing all prime implicants, but rather a set of non-redundant ones. Consider the
following example.

Ezample 2. The formula ¢ (z,y, z) = (xA—y)V(yAz) has three prime implicants:
x Ay, y Az and x A z. Note, however, that the third one is redundant, for the
formula was already expressed using only the first two.

The QBF IT can be slightly modified, such that the enumeration algorithm
stops as soon as the current set of prime implicants covers the entire formula.

That is, given a partial set {a1,...,ap} of prime implicants computed so far, in
every iteration we can update the body of Il with the additional constraint
“(p(*1,. .-y %n) < Vi_jai(*1,...,%y)), since the % variables are universally

quantified. Nevertheless, this solution is not fully satisfactory, for its efficiency
depends on the seemingly arbitrary order in which the QBF solver finds the
prime implicants.

4 Conclusions and Future Work

The present work was developed in a context in which quickly computing a set
of prime implicants was needed for a practical implementation. Unfortunately,
the empirical results so far are discouraging and showcase the disappointing
situation that QBF solvers are still not ready to compete against SAT-based
solutions —and, for that matter, not even against less optimized procedures.

At the time of writing, we have conducted small scale tests of the encodings
presented here using both the circuit-based solver QuAbS! as well as the PCNF
solver DepQBF?, after normalization to this format. In both cases, the QBF
procedure took considerably longer than the SAT-based analogues. In particular,
we compared the performance of our algorithm to Bica?, the implementation of
the SAT-based formula minimization algorithm described in [4], and against a
more naif procedure using the Z3 SMT solver*, where we first compute all models
of a formula and then iterate over it to keep the prime implicants only.

Though the results obtained so far point at the SAT-based alternatives as
the clear winners, we intend to keep investigating this approach further. In par-
ticular, we are interested in how performance compares between the encoding
from Section 2 and the one in Appendix A. We expect to be able to show some
meaningful empirical results in the near future.

All in all, even if the current state of QBF solving tools does not allow
for practical use of this approach, we believe the encoding presented here is
a paradigmatic example of how QBF solvers could be useful. A fast solving
tool would be able to replace the multiple SAT solver calls needed by modern
formula simplification algorithms in a way that is conceptually simpler and more
intuitive.

! https://github.com/ltentrup/quabs

2 https://lonsing.github.io/depgbf/

3 https://alexeyignatiev.github.io/software/bica/
* https://github.com/Z3Prover/z3



Prime Implicant Enumeration via QBF Solvers 5

References

1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press (2009)

2. Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS press
(2009)

3. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF minimization and
isomorphism testing for monotone formulas. Information and Computation 206(6),
760-775 (2008). https://doi.org/10.1016/j.ic.2008.03.002

4. Ignatiev, A., Previti, A., Marques-Silva, J.: SAT-based formula simplification. In:
International Conference on Theory and Applications of Satisfiability Testing. pp.
287-298. Springer (2015)

5. Quine, W.V.: The problem of simplifying truth functions.
The American Mathematical Monthly 59(8), 521-531 (1952).
https://doi.org/10.1080,/00029890.1952.11988183

6. Umans, C.: The minimum equivalent DNF problem and shortest impli-
cants. Journal of Computer and System Sciences 63(4), 597-611 (2001).
https://doi.org/https://doi.org/10.1006/jcss.2001.1775

A Alternative Encoding

The formula Prime(w, @) presented in Section 2.2 is quantified with the prefix
db11.. b1 F0na b

of size ©(n?). Furthermore, the body of the formula needs to copy a modified
version of ¢ a total of n times.

Though this encoding corresponds tightly to the DP-completeness of the
problem, we can obtain an encoding that is linearly smaller if we allow the use
of universal quantifiers in the prefix. The idea is to recover the original definition
of prime implicant in terms of X-restrictions. That is, we will encode that an
implicant « is prime is for every X-restriction o/, o/ is not an implicant, because
it can be extended into an assignment b that makes ¢ false.

Given a formula ¢ and an implicant o = (@, @), we claim that « is prime if
and only if the following formula is true:

AltPrime(u,a) = Vu) ... Vu,3by ... 3b, :

/\(ui — ul) A \/(ﬁui/\u;) — =p(w, ..., wy)

@) (i)

where w; := (u} — b;) A (—u} — a;) for every i € [n].

Note that the conjunction (¢) imposes that @ agrees with @ on the variables
that are left unassigned (i.e., if z; was unassigned in «, it must remain unassigned
in ). On the other hand, (7i) ensures that o/ disagrees with « in at least one



6 N. Arteche, M. Hermo

point (i.e., o’ is a restriction of «, in that there must be at least one variable
x; that « assigned but o’ did not). Finally, the consequent makes sure that the
restriction @' can be extended into an assignment that falsifies (.

Indeed, AltPrime(w, @) is smaller, both in the number of variables and in the
size of the matrix. At the cost of introducing universal quantifiers, the prefix has
now size ©(n) and the matrix only contains ¢ once instead of n times. In total,
AltPrime is linearly smaller than Prime.



