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atserias@cs.upc.edu

Susanna F. de Rezende
Lund University

susanna.rezende@cs.lth.se

Erfan Khaniki
University of Oxford

erfan.khaniki@cs.ox.ac.uk

Abstract—Atserias and Müller (JACM, 2020) proved that
for every unsatisfiable CNF formula φ, the formula REF(φ)—
stating that “φ has small Resolution refutations”—does not have
subexponential-size Resolution refutations. Conversely, when φ
is satisfiable, Pudlák (TCS, 2003) showed how to construct a
polynomial-size Resolution refutation of REF(φ) given a satisfying
assignment of φ. A question that had remained open is: do all
short Resolution refutations of REF(φ) explicitly leak a satisfying
assignment of φ?

We answer this question affirmatively by providing a
polynomial-time algorithm that extracts a satisfying assignment
for φ given any short Resolution refutation of REF(φ). The
algorithm follows from a new feasibly constructive proof of the
Atserias–Müller lower bound, formalizable in Cook’s theory PV1

of bounded arithmetic. This implies that Extended Frege can
efficiently prove (a suitable formalization of the statement) that
automating Resolution is NP-hard.

Motivated by this algorithm, we introduce a new meta-
computational problem concerning Resolution lower bounds: the
Proof Analysis Problem (PAP). For a fixed proof system Q, the
Proof Analysis Problem for Q asks, given a CNF formula φ and a
Q-proof of a Resolution lower bound for φ, encoded as ¬REF(φ),
whether φ is satisfiable. In contrast to the Proof Analysis Problem
for Resolution, which is in P, we prove that PAP for Extended
Frege (EF) is NP-complete. In particular, EF can prove Resolution
lower bounds on satisfiable formulas without necessarily revealing
a satisfying assignment.

Our results yield new insights into proof search and the meta-
mathematics of Resolution lower bounds: (i) for every proof
system that simulates EF as well as for Resolution, the system is
(weakly) automatable if and only if it can be (weakly) automated
exclusively on formulas stating Resolution lower bounds; (ii) we
provide explicit REF formulas that are exponentially hard for
bounded-depth Frege systems; and (iii) for every strong enough
theory of arithmetic T we construct explicit unsatisfiable CNF
formulas that are exponentially hard for Resolution but for which
T cannot prove even a quadratic Resolution lower bound. This
latter result applies to arbitrarily strong theories like PA or ZFC,
and does not require any complexity-theoretic assumptions.

Index Terms—proof complexity, automatability, Resolution,
Frege systems, bounded arithmetic
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I. INTRODUCTION

The most natural computational problem arising in proof
complexity is that of proof search: what is the complexity of
finding proofs? In the late 90s, the notion of automatability,
defined by Bonet, Pitassi, and Raz [1], emerged as a central
concept in the theory of propositional proof complexity. A proof
system Q is automatable if there is a deterministic algorithm
that finds a Q-proof of a formula φ in time polynomial in the
shortest one available. Except for Tree-like Resolution, which
is automatable in quasi-polynomial time [2], no other non-
trivial proof system is known to be automatable in polynomial
or quasi-polynomial time.

Krajı́ček and Pudlák [3] and Bonet, Pitassi, and Raz [1]
proved that under standard worst-case number-theoretic assump-
tions in cryptography, strong proof systems like TC0-Frege
and Extended Frege are not automatable. These results can
be transferred to AC0-Frege under slightly stronger hardness
assumptions [4], but it seems hard to push them further.
Essentially, their proof techniques require some amount of
basic number theory to be formalized in the system, something
that is likely unworkable for Resolution. Since then, efforts
focused on showing the hardness of automating Resolution and
related weak systems [5]–[12], culminating in the final answer
by Atserias and Müller [13], who proved that Resolution is
not automatable unless P = NP. This is the optimal hardness
assumption since P = NP implies the automatability of any
proof system.

The technique used in [13] relies on the insight that
Resolution cannot reason about its own lower bounds. To every
CNF formula φ, they associate a new formula REFs(φ) that
encodes the statement “there is a size-s Resolution refutation
of φ”. As a tautology, ¬REFs(φ) is a natural propositional
encoding of a Resolution lower bound. (We postpone to the
preliminaries the details of the encoding of the REF formula
we use, where we also discuss previously studied variations.)

Pudlák [5] had already shown in 2003 that whenever φ
is satisfiable the formula REFs(φ) is easily refutable by
Resolution. On the other hand, Atserias and Müller [13]
proved that whenever φ is unsatisfiable, Resolution will require
exponential size to refute REFs(φ), for s being some fixed
polynomial in the number of variables of φ, which we omit in
the subscript for the rest of this introduction for the sake of
clarity.

As a consequence, an automating algorithm running on
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formulas of the form REF(φ) can be used to decide SAT
in polynomial time: if φ ∈ SAT, then the algorithm must
find a short refutation of REF(φ) that Pudlák guarantees must
exist; on the other hand, if φ ̸∈ SAT, then there are no short
refutations of REF(φ), so we can stop the automating algorithm
after a polynomial number of steps and be certain that φ is
unsatisfiable.

The proof strategy behind the Resolution lower bound on
REF formulas was soon adapted to a variety of weak proof
systems (those where size lower bounds are known) [14]–[20],
although the REF-like formulas used in these spin-off results
are no longer natural lower-bound statements for these systems.
In general, as pointed out by Pudlák, the question of whether
a proof system can prove any of its own lower bounds “is
widely open, except for Resolution, and we consider it more
important than automatability” [21, p. 3]. It is currently open,
for example, whether systems like constant-depth Frege have
polynomial-size proofs of any of their own lower bounds.

The feat of the Resolution lower bound on REF formulas,
combined with the upper bound for satisfiable formulas, implies
that Resolution can only reason about “trivial” Resolution lower
bounds (i.e., lower bounds on satisfiable formulas, which do not
have refutations of any size). This highlights the upper bound
construction as something even more remarkable, given that
Resolution cannot efficiently argue about its own soundness
[22]. Intriguingly, the known upper bound for REF(φ) for
satisfiable φ crucially relies on Resolution guessing a satisfying
assignment and using it as the backbone of the refutation. It
is then natural to ask whether this is necessary:

(Q1) Is it the case that whenever there is a short Resolution
refutation of REF(φ), the proof must leak a satisfying
assignment?

By “leaking” we mean that a satisfying assignment is always
readable in polynomial time from the given refutation. It
is important to note that given a refutation π of REF(φ),
one cannot simply restrict π in a way that corresponds
to REF(φ↾x1=0) and REF(φ↾x1=1) to extract a satisfying
assignment. This is because the variables of φ are not variables
of REF(φ). In principle, such a self-reducibility trick seems
to require access to an automating algorithm, so that one
could successively look for refutations of REF(φ↾x1=0) or
REF(φ↾x1=1), then REF(φ↾x1=b1,x2=0) or REF(φ↾x1=b1,x2=1),
and so on for all variables. Without access to an automating
algorithm, it is not at all clear whether satisfying assignments
can be extracted efficiently.

Yet another way of phrasing the lower bound on REF
formulas is to see it as the correctness proof of a lower bound
analysis algorithm. Namely, the result proves that there is
an algorithm that given a Resolution refutation π of REF(φ)
decides whether φ is satisfiable. The algorithm consists simply
of checking whether π is correct and short enough. The
correctness of this procedure requires the proof of the lower
bound, and this framing naturally leads to the following second
natural question regarding REF formulas:

(Q2) Is there an algorithm that given an Extended Frege proof

π of a Resolution lower bound ¬REF(φ) decides in
polynomial time whether φ is satisfiable?

If the answer were affirmative, this would settle the long-
standing open problem of the NP-hardness of automating
Extended Frege: given a CNF formula φ, construct the formula
REF(φ) and run the automating algorithm to find a short
Extended Frege refutation. If an algorithm as the one asked for
in (Q2) existed, then we could apply it on this refutation
to analyze whether φ is satisfiable. This distills the main
idea in [13], and the framing of the question in terms of
algorithm design suggests that such an algorithm might well
be possible without the need for unconditional Extended Frege
lower bounds.

Overall, the two questions (Q1) and (Q2) above hint at
the central role of meta-mathematical lower bound statements
in the theory of proof search. We believe this calls for a
deeper structural understanding that could lead to much-needed
conceptual insights in automatability.

A. Contributions

Motivated by questions (Q1) and (Q2) above, we intro-
duce a new meta-computational problem relating proofs and
computation: the Proof Analysis Problem.

For every propositional proof system Q, the Proof Analysis
Problem for Q (PAPQ) consists in analyzing Resolution lower
bounds proven by Q. More formally, given a CNF formula
φ and a Q-proof of the Resolution lower bound encoded by
the formula ¬REFs(φ), the task is to decide whether φ is
satisfiable.

The problem can be seen as the computational task of
distinguishing “true” Resolution lower bounds (those where
φ is actually unsatisfiable) from “trivial” ones (those where
the lower bound trivially holds because φ is satisfiable and
there is therefore no Resolution refutation, of any size). For
those proof systems for which PAPQ ∈ P, we say that Q is
analyzable. We remark that the REF formula in the definition
of PAPQ is always referring to Resolution refutations, while
the proof system Q where REF(φ) is being derived can be
arbitrarily strong.

For the case of Resolution itself, the problem PAPRes is
easy to compute thanks to the lower bound on REF formulas
[13]: if π is a correct refutation of REF(φ) and it is small,
then φ must be satisfiable. Until now, however, to the best
of our knowledge this was the extent of what could be said
about PAP-like problems. In particular, we are not aware of
any other upper or lower bounds on this problem for proofs
systems other than Resolution.

In the language of PAP, questions (Q1) and (Q2) can be
neatly rephrased as follows:
(Q1) Does PAPRes admit a search-to-decision reduction?
(Q2) Is Extended Frege analyzable? Namely, is PAPEF in P?

In this work we kick-start the systematic study of these
Proof Analysis Problems and settle questions (Q1) and (Q2)
above. This in turn yields a series of interesting consequences
for the meta-mathematics of proof complexity lower bounds
as well as proof search. We outline our results next.
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1) An algorithm for assignment extraction: On the topic of
question (Q1), our main result is that the search version of
PAPRes can be solved deterministically in polynomial time.

Theorem I.1 (Assignment extraction algorithm, informal). The
search version of the Proof Analysis Problem for Resolution
can be solved in deterministic polynomial time whenever the
size parameter s is at least n3. That is, there is an algorithm
that, given a CNF formula φ over n variables and poly(n)
clauses and a Resolution refutation π of REFs(φ) with s ≥ n3,
extracts a satisfying assignment for φ in time polynomial in n,
s and the size |π| of π, whenever φ is satisfiable.

The question can be stated more formally in terms of Levin
reductions. A Levin reduction between search problems R1

and R2 is a Karp-style many-one reduction that maps instances
of R1 to instances of R2, with the additional property that
it also maps solutions of R1 to solutions of R2, and back.
The reduction φ 7→ REF(φ) showing that SAT reduces to the
Proof Size Problem for Resolution with an exponential gap is
clearly Levin in one direction: given a satisfying assignment
of φ, Pudlák’s construction can craft a refutation of REF(φ).
However, it had remained open whether this Levin reduction
could be made two-way: given a refutation π of REF(φ), can
one always extract a satisfying assignment to φ in polynomial
time?

For most if not all natural NP-complete languages, the
corresponding search problems tend to be complete under
Levin reductions. However, the same decision problem could
admit different search problems associated to it, and it is known
that if P ̸= NP ∩ coNP, then there are NP search problems
that do not reduce to each other under Levin reductions,
while their decision versions are NP-complete (and hence do
reduce to each other) under Karp reductions (see, for example,
[23], [24]). To the best of our knowledge, until now the only
natural examples of candidates to be NP-hard search problems
without Levin reductions were precisely certain problems
arising in the context of meta-complexity. One is the Minimum
Circuit Size Problem (MCSP), for which Mazor and Pass
[25] recently proved that a certain gap version is not NP-
complete under Levin reductions, assuming the existence of
indistinguishability obfuscation (iO). The other candidate was
precisely the reduction from SAT to the Proof Size Problem for
Resolution. Theorem I.1 settles this, giving a two-way Levin
reduction.

The existence of the extraction algorithm answers question
(Q1) in the affirmative: Resolution refutations of REFs(φ) must
leak a satisfying assignment. This has a certain information-
theoretic flavor: the fact that satisfying assignments can
always be efficiently extracted implies that the most succinct
description of a refutation of REFs(φ) must include the
description of a satisfying assignment for φ. We can make
this precise in the language of Kolmogorov complexity using
the framework of information efficiency of Krajı́ček [26], who
studied the minimum time-bounded Kolmogorov complexity
(Kt) of propositional proofs.

Theorem I.2 (Assignment extraction as information efficiency,
informal). For every satisfiable CNF formula φ over n
variables and poly(n) clauses,

infoRes(¬REF(φ)) ≈ min{Kt(α | φ) | φ(α) = 1},

where infoQ(ψ) := min{Kt(π | ψ) | π : Q ⊢ ψ} is Krajı́ček’s
information efficiency function.

To the best of our knowledge, this is one of the first
applications of Krajı́ček’s framework.

2) The Proof Analysis Problem for strong proof systems:
Motivated by (Q2), we ask whether PAP is in P for strong
proof systems. We conclude that the answer is likely negative
by proving optimal conditional lower bounds in the form of
NP-hardness for every proof system that p-simulates Extended
Frege (EF).

Theorem I.3 (NP-hardness of PAPEF, informal). For every
propositional proof system S that p-simulates Extended Frege,
the Proof Analysis Problem for S is NP-complete.

This means that, unlike Resolution, strong proof systems
are seemingly able to prove “trivial” Resolution lower bounds
on satisfiable formulas without having to first prove that the
underlying formula is satisfiable. In particular, this means
Extended Frege is strong enough to obfuscate the satisfying
assignments. As a consequence, for strong proof systems like
Extended Frege, one cannot hope to prove they are NP-hard
to automate following a strategy similar to that of [13].

3) Formalization of the Atserias–Müller lower bound in
PV1: The inspiration for why the extraction algorithm in
Theorem I.1 might exist in the first place comes from witnessing
theorems in bounded arithmetic. We work here with Cook’s
theory PV1 and Buss’s S12, which are first-order theories of
arithmetic formalizing polynomial-time reasoning. In these
theories, if a statement of the form ∀x∃yφ(x, y) with a low-
complexity φ(x, y) is provable in the theory, then there exists
a polynomial-time algorithm that witnesses y given x. This
implies, in particular, that if a problem is proven NP-hard
in one of these theories, then the reduction will be a Levin
reduction.

The key observation for us is that the statement of the lower
bound is itself of this form, a ∀Σb

1 sentence:

“for every formula φ and every Resolution refutation π of
REF(φ), there exists a satisfying assignment for φ, or else π

is large.”

Thus, if the previous statement were provable in PV1, we
would get a polynomial-time function extracting satisfying
assignments given φ and π.

While the extraction algorithm presented in Theorem I.1 is
given directly in natural language, it is still worth formalizing
the lower bound in bounded arithmetic to obtain a variety of
applications.

Theorem I.4 (Atserias–Müller lower bound [13] in PV1,
informal). The theory PV1 proves the statement that for every
CNF formula φ over n variables and every size parameter
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s ∈ N, if φ is unsatisfiable and π is a correct Resolution
refutation of REFs(φ), then |π| ≥ 2Ω(s/n2).

Formalizations in bounded arithmetic tend to be particularly
interesting when they lead to new proofs of known statements.
This has been the case, for example, with Razborov’s formaliza-
tions of circuit lower bounds leading to the now-famous proof
of Håstad’s switching lemma via a simpler counting argument
[27]. Remarkably, the method introduced by Razborov to
formalize the switching lemma is recognized for enabling
proofs to at least two major conjectures in combinatorics [28],
[29]. Another example is a recent new proof of the Schwartz-
Zippel lemma [30], proven via a hybrid argument formalizable
in S12. Our formalization of the lower bound on REF formulas
also relies on a new proof. We elaborate on this in the technical
overview.

We remark that our bound of the form 2Ω(s/n2) is slightly
worse than the original one, which we state here for conve-
nience.

Theorem I.5 (Atserias–Müller lower bound [13]). For every
CNF formula φ over n variables and every size parameter
s ∈ N, if φ is unsatisfiable and π is a correct Resolution
refutation of REFs(φ), then |π| ≥ 2Ω(s/n).

The difference in the bound means that we can only show
that PV1 proves hardness of REFs(φ) for s ≥ n3. We leave
it open whether PV1 can achieve the original 2Ω(s/n) bound
via a different argument. In any case, this is not particularly
important for our applications. We comment on this further in
the technical overview.

4) Formalization of Pudlák’s upper bound in Resolution:
We complement the formalization of the lower bound with a
formalization of the upper bound [5], showing that there are
short refutations of REF(φ) whenever φ is satisfiable. This
construction can be carried out by a constant-depth circuit
and could be formalized in S12, but certainly also in much
weaker theories. We prove the somewhat surprising fact that
the construction can be proven correct in Resolution itself.

Theorem I.6 (Pudlák’s upper bound [5] in Resolution, in-
formal). There is a polynomial-size depth-2 Boolean cir-
cuit P (α,φ, s) of fan-in 2 that given a CNF formula φ, a
satisfying assignment α, and s ∈ N, outputs a Resolution
refutation π of REFs(φ). Furthermore, the correctness of this
circuit P has polynomial-size proofs in Resolution.

That is, not only Resolution has short refutations of REF(φ)
when φ is satisfiable: Resolution can show that the circuits gen-
erating these refutations from satisfying assignments are correct.
This, again, is in striking contrast with the fact that Resolution
does not have small proofs of its own soundness [22].

5) Propositional fragments of Atserias–Müller: automatabil-
ity in terms of REF formulas: The main consequence of the
extraction algorithm together with its formalization in bounded
arithmetic is the following precise characterization theorem
relating the provability of a formula ¬φ to the provability of
the formula ¬REF(REF(φ)). (For the sake of clarity, we ignore

for now the exact size parameters of the REF formulas, which
are always some fixed polynomials; in general, when we write
S ⊢poly φ we mean that S has polynomial-size proofs of φ,
and by “reasonable proof system” we mean essentially that the
system is closed under modus ponens.)

Theorem I.7 (Propositional fragments of Atserias–Müller,
informal). Let S be a reasonable propositional proof system
that simulates Extended Frege. Then, for every sequence
{φn}n∈N of unsatisfiable CNF formulas,

S ⊢poly ¬φn if and only if S ⊢poly ¬REF(REF(φn)).

The lower bound on REF formulas says that for every unsat-
isfiable φ, the corresponding REF(φ) is hard for Resolution,
making REF(REF(φ)) unsatisfiable. The latter encodes the
statement “REF(φ) is hard for Resolution”, and our theorem
shows that when restricted to the reasoning power of a specific
proof system S, such a lower bound has small proofs if, and
only if, S has short proofs of the unsatisfiability of φ in the first
place. That is, the fragment of the Atserias–Müller lower bound
that has short proofs in S is precisely the one corresponding to
the formulas that S can prove unsatisfiable with short proofs.

This characterization is surprisingly tight and has conse-
quences for automatability and proof search. Since we can relate
the proof size of φ in S to the proof size of REF(REF(φ)),
this means that looking for proofs of REF(REF(φ)) can be a
proxy for searching for proofs of φ.

Theorem I.8 (Automatability in terms of REF formulas,
informal). For every reasonable proof system S that simulates
Extended Frege as well as for Resolution itself,

(i) S is automatable if, and only if, S is automatable
exclusively on REF formulas;

(ii) S is weakly automatable if, and only if, S is weakly
automatable exclusively on REF formulas.

We remark again that these REF formulas are always talking
about Resolution, not about S. That is, for every strong enough
proof system, efficient proof search over all tautologies is
equivalent to efficient proof search over Resolution lower
bounds.

Until now no such general structural result was known that
related proof search generally to proof search for a particular
class of formulas. This goes in line with a question of Pich
and Santhanam [31], who asked whether automating a proof
system on truth-table tautologies (i.e., formulas stating circuit
lower bounds) implies the automatability of the system on
all tautologies. We have proved that this is the case for the
class of formulas stating Resolution lower bounds in place of
truth-table tautologies.

6) Unprovability of Resolution lower bounds: Theorem I.6,
together with Theorem I.5, further imply that true Resolution
lower bounds can be essentially arbitrarily hard to prove.
Namely, if S is a propositional proof system where {φn}n∈N
is a sequence of formulas that S cannot refute in polynomial
size, then S cannot refute {REF(REF(φn))}n∈N either.
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Theorem I.9 (Propositional unprovability of Resolution lower
bounds, informal). Let Q be a reasonable propositional proof
system that simulates Resolution. If {φn}n∈N is a sequence
of hard unsatisfiable CNF formulas for Q, where φn has n
variables and size |φn| = poly(n), then

(i) the formulas REFn2(φn) over N = poly(n) variables are
all unsatisfiable and require size 2N

Ω(1)

to be refuted in
Resolution;

(ii) yet, Q does not have polynomial-size refutations of the
formulas REFN2(REFn2(φn)) stating quadratic lower
bounds on REFn2(φn).

There is nothing special about quadratic lower bounds being
unprovable—one can get arbitrarily small polynomial lower
bounds by tweaking the encoding. See the discussion after
Theorem I.11.

We note that Iwama showed in 1997 that the Proof Size
Problem for Resolution is NP-complete [32]. This means,
in particular, that its complement in coNP-complete and
hence, unless NP = coNP, no propositional proof system
can efficiently derive all tautological REF formulas (i.e., all
true Resolution lower bounds), or else there would be a
polynomially bounded proof system. While this has a similar
flavor to our result, our theorem is different in at least two
aspects. First, from an explicit family of hard tautologies we
obtain an explicit family of hard REF formulas for the system,
in a generic way. Second, the parameters are essentially optimal:
we identify a sequence of unsatisfiable formulas for which an
exponential (and hence maximal) Resolution lower bound holds
—while the system Q in question cannot even prove a quadratic
lower bound.

As a corollary of Theorem I.9, for example, we get the
first explicit lower bounds for REF formulas in bounded-depth
Frege systems.

Corollary I.10 (Hard REF formulas for bounded-depth Frege,
informal). For every d ≤ O(log n/ log logn), the formu-
las REF(REF(PHPn)) are all unsatisfiable but require size
exp

(
Ω(n1/(2d+1))

)
to be refuted in depth-d Frege systems.

We build here on the best-known PHP lower bounds by
Håstad [33], but even better bounds could be obtained by
applying the same argument to Tseitin formulas using the
results of Håstad and Risse [34]. This corollary contrasts again
with the open question of Pudlák [21] about whether constant-
depth Frege proves any of its own lower bounds.

Finally, using similar ideas, we obtain unconditional inde-
pendence results for first-order theories of arithmetic.

Theorem I.11 (First-order unprovability of Resolution lower
bounds, informal). Let T be a consistent first-order theory
extending Robinson Arithmetic by a set of polynomial-time
recognizable axioms. Then, there exists a sequence of unsatis-
fiable propositional formulas {ψN}N∈N described uniformly
by a polynomial-time algorithm, where ψN has N variables,
such that

(i) Resolution refutations of the formula ψN require size
2N

Ω(1)

;

(ii) there exists c > 0 such that the theory T cannot
prove Ω(N c) lower bounds on the Resolution size
of these refutations; that is, there is N0 ∈ N such
that the lower bound expressed by the first-order sen-
tence ∀N∀π (N > N0 ∧ RefRes(ψN , π) → |π| > N c) is
unprovable in T .

We remark that the theory T in this theorem can be arbitrary
strong. This implies that, unconditionally, theories like Peano
Arithmetic (PA) cannot prove all true Resolution lower bounds.
The same ideas apply to Zermelo-Fraenkel Set Theory (ZFC)
and similarly powerful formal systems.

We also note that the constant c > 0 in the exponent of the
unprovable lower bound depends on the definition of ψN . In
general, one can alter ψN to get an unprovable lower bound
of the form Ω(N c) for any fixed constant c > 0.

B. Technical overview

Next we provide a technical overview of the main proof
ideas and how these are combined to yield our main results
and corollaries.

1) Assignment extraction: We obtain the extraction algo-
rithm in Theorem I.1 by derandomizing the proof of the
Resolution lower bound for the REF formulas. The original
proof revolves around the concept of block-width (called index-
width in [13]) in Resolution refutations of REFs(φ). The
variables of the formula are arranged into s blocks, each
encoding a clause in the purported refutation of size s. The
block-width of a refutation π is then the largest number of
blocks mentioned in a clause of the refutation π. The proof
proceeded in two steps:

1) derive a block-width lower bound, showing that if φ ̸∈
SAT, then the block-width of any refutation of REFs(φ)
must be large;

2) by a random restriction argument, argue that if the
refutation π is small, there exists a restriction that
makes the block-width of the restricted refutation small,
contradicting the previous point.

Our algorithm works by following these steps in reverse.
First, given a refutation π from which we want to extract
a satisfying assignment, instead of sampling a restriction at
random from a specific distribution, we construct a restriction
deterministically in a greedy fashion, tailored to the specifics
of π. This is reminiscent of the kind of greedy deterministic
restrictions used by Cook and Pitassi [35] to formalize Haken’s
lower bound for the pigeonhole principle in bounded arithmetic,
and more broadly in the style of Beame and Pitassi [2], Clegg,
Edmonds, and Impagliazzo [36] and Ben-Sasson and Wigderson
[37]. Our algorithm runs in deterministic polynomial time and
always succeeds in finding a restriction that reduces the block-
width to O(

√
s log |π|).

In the second step, we look at the proof of the block-width
lower bound and interpret it as a Prover-Delayer game in
the style of Atserias and Dalmau [38]. The Prover issues
queries about the values of the variables of REFs(φ), or
forgets previously recorded such values, and the Delayer replies
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following a concrete strategy that allows them to keep playing
until a large number of blocks appear queried. Our algorithm
traverses the Resolution refutation guided by the Delayer’s
strategy in the Prover-Delayer game. We can then prove that
this Delayer’s strategy will, after a polynomial number of steps,
reach either

(a) a clause of high block-width, or
(b) a clause encoding a satisfying assignment to φ.

Since the greedy deterministic restriction in the first step made
sure the block-width is small, the Delayer will be guaranteed
to find a satisfying assignment.

We note that our deterministic restriction only achieves
a reduction of block-width to O(

√
s log |π|), while using a

random restriction one could achieve up to O(log |π|). In fact,
if one allows randomness in the extraction algorithm, then an
argument similar to the random restriction of [13] yields a
zero-error probabilistic polynomial-time extraction algorithm
that works even when the refutation π being analyzed is for the
formula REFn2(φ). In contrast, the price to pay for determinism
is that the size parameter s should be at least n3.

2) NP-hardness of PAPEF: The idea behind the hardness
proof in Theorem I.3 is best explained as a reduction from the
Minimum Circuit Size Problem (MCSP)—although given that
MCSP is not known to be NP-hard, the actual proof in the
main text is a bit more technical and goes instead via a reduction
from VERTEX COVER. In 2004, Razborov [39] proved that
Resolution cannot efficiently prove circuit size lower bounds.
This statement is captured by the the well-known truth-table
tautologies TT(f, s) stating that a truth-table f can be computed
by a circuit of size s. Then, the formula REFt(TT(f, s)) states
that there exists a size-t Resolution refutation of TT(f, s).
By Razborov’s lower bound there are no such Resolution
refutations, meaning that REFt(TT(f, s)) is unsatisfiable for
values of t polynomial in |TT(f, s)|.

An interesting feature of Razborov’s lower bound is that
it is agnostic about whether f is actually hard for circuits
of size s. Namely, even if f was computable by size-s
circuits, making TT(f, s) satisfiable and hence REFt(TT(f, s))
unsatisfiable for a trivial reason, Razborov’s argument can still
prove the unsatisfiabilty of this REF formula without exhibiting
a satisfying assignment for TT(f, s).

Now, suppose that Razborov’s lower bound was formalizable
in, say, Extended Frege1 in a uniform manner. That is, suppose
there is a polynomial-time algorithm that given a truth-table f
and size parameters s and t outputs an EF proof π such that

π : EF ⊢ ¬REFt(TT(f, s)).

Then, if PAPEF happened to be in P, there would be a
polynomial-time algorithm that given π would decide whether
TT(f, s) ∈ SAT, which is the same as deciding MCSP. Hence,
PAPEF (or PAP for whatever system capable of formalizing
Razborov’s proof) would be at least as hard as MCSP.

1We note that it is not known nor clear at all that Razborov’s argument
goes through in EF. The assumption is only for the sake of exposition.

For our proof we do not formalize Razborov’s lower bounds,
and instead instantiate this idea for a specific propositional
encoding of VERTEX COVER for which Resolution lower
bounds follow from Haken’s lower bound for the pigeonhole
principle. Here we leverage the formalization of Cook and
Pitassi, who showed that Haken’s lower bound is provable in
EF [35].

3) Formalization of the upper and lower bounds: A large
part of our technical contribution consists in formalizing the
proofs leading to the NP-hardness of automating Resolution.
We summarize below some of the challenges encountered, and
the solutions devised.

a) The Atserias–Müller lower bound in PV1: Different
proofs of the lower bound exist in the literature, but none of
them seem directly formalizable in PV1. The original proof has
the caveat of the random restriction argument, which might be
formalizable in Jeřábek’s theory APC1, but likely not in PV1.
In addition, the block-width lower bound is proven by relating
small refutations to the canonical exponential-size tree-like
refutation of any formula, which could be hard to reason about
in bounded theories.

In the work of de Rezende, Göös, Nordström, Pitassi, Robere,
and Sokolov [18] two alternative proofs were presented. The
first proof consists of a random restriction followed by a block-
width lower bound proven via a reduction to the retraction
weak pigeonhole principle. The random restriction presents
the same formalization issues as the original proof, and the
block-width reduction is equally problematic: the decision tree
reduction they use has low depth, which is necessary to transfer
the lower bounds on (block-)width, but the size of the decision
tree itself seems to be superpolynomial, and hence cannot be
reasoned about in PV1. The second proof of de Rezende, Göös,
Nordström, Pitassi, Robere, and Sokolov uses this same block-
width lower bound followed by the size-width trade-offs of Ben-
Sasson and Wigderson [37]. The block-width lower bound is
still problematic, of course, but in addition to this, the statement
of Ben-Sasson and Wigderson—“for every small Resolution
refutation, there exists another Resolution refutation in small
width”—is itself impossible to formalize in bounded arithmetic.
The reason for this is that, as demonstrated by Thapen [40],
in general these narrow proofs can require superpolynomial
size, and therefore the statement of Ben-Sasson and Wigderson
cannot possibly be a bounded formula.

Finally, Garlı́k [41] has proven lower bounds on the REF
formulas for the so-called non-relativized encoding. Unfortu-
nately for us, his proofs encounter the same barrier: they rely
on random restriction arguments, which are in any case more
involved than the original ones.

We resolve these issues by coming up with new proof,
inspired by the extraction algorithm, that modifies both ingre-
dients in the original proof, yielding Theorem I.4. The random
restriction argument is replaced by a greedy deterministic
restriction just like the one used in the extraction algorithm.
For the block-width lower bound, we show that the argument
can be completely described by a Prover-Delayer game without
referring to the exponential-size canonical tree-like refutation,
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making the entire proof formalizable in PV1.
We remark that moving from the random restriction to the

deterministic one comes at the cost of a slightly worse lower
bound. The original size bound on REF formulas is of the form
2Ω(s/n) and hence yields 2Ω(n) Resolution size lower bounds
for all REFs formulas with s ≥ n2. Our deterministic restriction,
in line with the parameters of the extraction algorithm, achieves
a lower bound of 2Ω(s/n2) which is exponential in Ω(n) for
s ≥ n3. It seems reasonable that the original proof with the
random restriction can be formalized in APC1, but we have
not carried out this formalization.

b) Pudlák’s upper bound in Resolution: For the upper
bound in Resolution (Theorem I.6), our proof is based on a
careful analysis of the construction that makes it possible to
describe the construction by a low-depth circuit. Carrying out
the proof of the correctness of this circuit in Resolution is
tedious, but ultimately clear once the right description of the
circuit is provided.

An interesting technical ingredient is the fact that the
correctness statement itself (“if α is a satisfying assignment,
then the circuit outputs a correct refutation”) is an implication
that cannot be immediately expressed as a polynomial-size
CNF formula. To deal with this, we devise a construction using
extension variables that simulates negations of CNF formulas
in Resolution, which we name pseudo-negations. With the aid
of this pseudo-negation operators, Resolution can carry out
modus ponens inferences.

4) Consequences:
a) Characterization of the propositional fragments of

Atserias–Müller: Our characterization theorem (Theorem I.7)
is a consequence of the formalization of the lower bound in
PV1 (Theorem I.4) and the upper bound in Resolution itself
(Theorem I.6). Those results, in the propositional setting, imply
that

1) for the extraction algorithm E, we have

EF ⊢ REF(REF(φ), π) → SAT(φ,E(φ, π));

2) for Pudlák’s algorithm P , we have

Res ⊢ SAT(φ, α) → REF(REF(φ), P (φ, α)).

Here, we highlight the variables of the REF formula encoding
a refutation π as the second argument of REF. In particular,
the Resolution proof of the correctness of P is also possible in
EF. Then, simple use of contraposition allows us to go from
¬φ to ¬REF(REF(φ)), and vice versa. That is, if EF can prove
¬φ, then it can also prove it in the encoding ¬SAT(φ, α), and
when substituting E(φ, π) for α, where π are the only free
variables, contraposition on item (1) gives us that EF derives
¬REF(REF(φ), π). The other direction is analogous.

b) Automatability in terms of REF formulas: For the
characterization of automatability in Theorem I.8 to go through
we build on Theorem I.7 and additionally show that the
characterization given there is not only in terms of proof size,
but it is actually constructive. Given a proof of ¬φ in S we
can efficiently construct a proof of ¬REF(REF(φ)), and vice

versa. In this way, searching for proofs of REF(REF(φ)) is a
proxy for the proofs of φ.

Remarkably, our proof techniques fail for proof systems
strictly between Extended Frege and Resolution. The upper
bound in Resolution does imply that from a refutation of
REF(REF(φ)) we can obtain a refutation of φ. Unfortunately,
it is our extraction algorithm (Theorem I.1) what guaranteed
that if φ has a refutation of size t, then REF(REF(φ)) has
a refutation of size poly(t). In Extended Frege this is true
thanks to the extraction algorithm, but it seems conceivable
that weaker systems might be able to easily prove ¬φ without
being able to prove ¬REF(REF(φ)) efficiently. (For Resolution
itself this result does go through, for the more ad-hoc reason
that REF formulas talk about Resolution itself).

c) Unprovability of Resolution lower bounds: For Theo-
rem I.9 we exploit Theorem I.6: if there is a short refutation
of REF(REF(φ)), then there is a short refutation of φ. Since
we formalized the upper bound construction in Resolution, the
result applies to any proof system that contains Resolution
(and behaves naturally in the sense that it is closed under
modus ponens). Then, if φ is a hard formula for Q and Q
simulates Resolution, we have that REF(φ) is unsatisfiable. By
the lower bound on REF formulas (Theorem I.5), this formula
is exponentially hard for Resolution, making REF(REF(φ))
unsatisfiable as well—but hard to refute for Q.

In the first-order setting, Theorem I.11 relies again on the
formalization of the upper bound on REF formulas. This time,
instead of starting from a sequence of hard propositional
formulas, we can leverage Gödel’s second incompleteness
theorem to start from a sentence (the consistency of T ) that
is unconditionally unprovable in T . From this follows that T
cannot prove the soundness of a certain propositional system
based on T (the so-called strong proof system of T [21]).
We then consider the REF(·) formula around these soundness
statements. We conclude that if T could derive the lower
bound on the REF(·) formulas in question, it would also be
able to prove the soundness of the strong proof system of T
and, as a consequence, T would derive its own consistency.
Since Gödel’s incompleteness theorem gives us sentences
that are unconditionally independent of T , the corresponding
Resolution lower bounds are also unconditionally unprovable
in T . This works essentially for any theory of arithmetic subject
to Gödel’s incompleteness phenomenon, and does not rely on
any complexity-theoretic assumptions.

C. Related work

Our work fits into a trend in complexity theory concerned
with the meta-mathematics of computational complexity, which
has gained remarkable momentum in recent years. Most of
this work has been primarily concerned with the formaliza-
tion of cornerstone results of computational complexity in
bounded arithmetic and establishing unprovability and logical
independence as barrier results. The literature is too vast to
review here, so refer the reader to the recent survey of Oliveira
[42]. In parallel, there has been a growing body of work
deploying tools and ideas from mathematical logic to prove
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complexity-theoretic statements (see, e.g., [31], [43]–[56]). Our
work continues in this direction.

Two recent works conceptually related to our investigations
on REF formulas merit further discussion. Santhanam and
Tzameret [57] initiated a general study of REF formulas for
arbitrarily strong proof systems. In particular, they studied
iterations of these formulas, which are reminiscent of the nested
REF(REF(φ)) formulas that feature in our work. Their REF
formulas are not limited to Resolution, and they consider the
iterated version of REFQ when REFQ talks about an arbitrarily
strong proof system Q. While we are unable to connect our
work on analyzability to their results, our characterization
of proof size in terms of REF formulas (Theorem I.7) has
conceptual ties to their Iterated Lower Bounds Hypothesis.

The other relevant work is the research of Li, Li, and
Ren [58], who studied the provability of Resolution lower
bounds in relativized theories of bounded arithmetic in the
context of TFNP. Until their work, the only formalization
of proof complexity lower bounds that we are aware of is
that of Cook and Pitassi [35]. Li, Li, and Ren studied so-
called refuter problems in proof complexity: given a purported
Resolution refutation of, say, PHPn, which is smaller than
the known lower bounds, find a mistake in the proof (which
must certainly exist, due to these very lower bounds). They
connect the provability of lower bounds to the complexity of
solving these refuter problems in subclasses of TFNP. While
their results yield formalizations of some proof complexity
lower bounds, our results are essentially incomparable. First,
their provability results are for relativized theories of bounded
arithmetic, where the given Resolution refutation is accessed
through an oracle, while our proofs are in the non-relativized
theories, where we can quantify over the objects in question.
Second, they consider the provability of lower bounds for
explicit families of tautologies like the pigeonhole principle
or the Tseitin formulas. In contrast, the lower bound we are
concerned is a sort of meta lower bound: it tells us that the
REF(φ) formulas are hard whenever φ is unsatisfiable. We
believe, however, that the TFNP perspective on analyzability
might shed light on some of our open questions.

D. Open problems

a) Analyzability of constant-depth Frege and other weak
proof systems: Similar techniques to those of [13] have been
employed to prove the NP-hardness of automating other weak
proof systems like Regular and Ordered Resolution [14], [15],
k-DNF Resolution [16], Cutting Planes [17], Nullstellensatz
and Polynomial Calculus [18], the OBDD proof system [19]
and, more recently, even AC0-Frege [20]. All proof systems
weaker than Resolution are analyzable just because Resolution
is (i.e, their corresponding PAP problems are in P), since
analyzability is downwards closed under p-simulations. For
the stronger systems, the question remains open. Are these
systems analyzable? What about their search versions?

We highlight the analyzability of constant-depth Frege as
a particularly interesting problem. While we have proven
some unconditional lower bounds on REF formulas here, it is

open whether AC0-Frege can prove any true Resolution lower
bounds at all. It has been conjectured in the past that the PHP
lower bound might be formalizable in these systems, at least in
quasi-polynomial size. If this was possible, the NP-hardness
of PAPEF in Theorem I.3 could be improved all the way to
these systems.

b) FP-completeness of the search version of PAPRes:
While we have shown that assignment extraction can be
performed in polynomial time, our algorithm does not seem
to be possible anywhere below P. The algorithm seems hard
to parallelize, which raises the question of whether the search
version of PAPRes is in NC or even below. This is related
to the question of whether the formalization of the lower
bound on REF formulas is provable in theories weaker than
PV1. If the statement was provable in, say, VNC1, witnessing
theorems would give us a extraction in FNC1. We conjecture
that this improvement is in fact impossible, and that the search
problem of PAPRes is complete for FP under AC0-reductions,
but we are unable to prove it. The reduction, if true, likely
requires some new technical idea. This would imply, amongst
other things, that V0 does not prove the lower bound on REF
formulas, unconditionally.

c) On the weak automatability of Resolution: Recall
that a proof system is weakly automatable if there exists
a proof system that p-simulates it and is automatable. By
our Theorem I.8, the weak automatability of Resolution is
equivalent to a proof system Q simulating Resolution and
being automatable on REF formulas. If Q ≥ EF, then our
theorem would imply that Q itself would be automatable
on all formulas, hitting cryptographic hardness results [1],
[3], [4], [52]. However, if Q is strictly weaker than EF, our
statement does not apply and the automatability of Q on REF
formulas does not imply automatability on all formulas. This
does not seem to contradict any hardness assumptions. Of
course, no such Q is known to be efficiently automatable
on Resolution lower bound statements, but this raises again
the question of whether some non-trivial algorithm weakly
automating Resolution might be plausible.

E. Structure of the paper

The paper is structured as follows. After the preliminaries
in Section II, we dedicate Section III to formally defining the
Proof Analysis Problem and stating some basic facts about it.
Section IV proves Theorem I.1, describing the algorithm for
the search version of PAPRes, while the proof of Theorem I.2 is
omitted in this version, but can be found in the full version [59].
Section V proves Theorem I.3, giving NP-hardness of PAPEF

and stronger systems. The remaining results stated earlier can
all be found in the full version of the paper [59].

II. PRELIMINARIES

We assume the reader to be familiar with the central concepts
of computational complexity theory. Below, we review the
essential definitions and facts involving proof complexity and
bounded arithmetic that feature in the paper. For a more
comprehensive treatment of proof complexity, we refer to
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Krajı́ček [60]. For bounded arithmetic, the recent survey of
Oliveira [42] covers all the necessary material in the style
of the meta-mathematics of computational complexity, which
aligns with the style of our work. Other classical texts in
logic and bounded arithmetic also cover these contents (see,
e.g., [61]–[64]).

A. Proof complexity

Following the classical definition of Cook and Reckhow [65],
a propositional proof system S for the set TAUT of propositional
tautologies is a polynomial-time function S : {0, 1}∗ → TAUT
whose range is exactly TAUT. We think of S at the polynomial-
time verifier mapping proofs to the statements they prove;
i.e., if S(π) = φ, then we say π is an S-proof of φ. It is
often convenient to think of a proof system as establishing
unsatisfiability; thus, if φ is an unsatisfiable formula and π
is an S-proof of the tautology ¬φ, then we say that π is an
S-refutation of φ, or an S-proof of the unsatisfiability of φ.
Since we deal exclusively with classical logic, here and below
we tacitly gloss over the distinction between the formulas ¬¬φ
and φ; this is particularly useful for literals ℓ, where ¬ℓ is
sometimes used to denote the complementary literal.

For a tautology φ and a proof system S, we denote by
sizeS(φ) := minπ:S(π)=φ |π| the size of its smallest S-proof.
A proof system S is polynomially bounded if there exists a
constant c ∈ N such that for all φ ∈ TAUT we have sizeS(φ) ≤
|φ|c. For a sequence φ = {φn}n∈N of tautologies, we write
S ⊢poly φ or simply S ⊢poly φn to express that sizeS(φn) =
|φ|O(1) as n grows. When we want to emphasize that it is via
a specific proof π that S proves φn, we write π : S ⊢ φn.
More generally, for s ∈ N, we write S ⊢s φn to express that
there exists an S-proof π of size |π| ≤ s such that π : S ⊢ φn.

We say that a proof system S simulates another system Q,
written S ≥ Q, if there exists a constant c ∈ N such that
for every φ ∈ TAUT we have sizeS(φ) ≤ sizeQ(φ)

c. We
additionally say that S p-simulates Q and write S ≥p Q if
there exists a polynomial-time computable function sending
Q-proofs to S-proofs of the same formula; i.e., there exists
a polynomial-time computable function f such that for every
φ ∈ TAUT and every π : Q ⊢ φ, we have f(π) : S ⊢ φ.
We say that two proof systems S and Q are polynomially
equivalent if S ≥p Q and Q ≥p S. A proof system S is
optimal if S ≥ Q for every propositional proof system Q, and
respectively p-optimal if S ≥p Q for every propositional proof
system Q.

A literal is a propositional variable or its negation. Given a
formula φ(x1, . . . , xn), a literal substitution is a mapping of the
form ρ : {x1, . . . , xn} → {x1, . . . , xn,¬x1, . . . ,¬xn, 0, 1}
that replaces variables by other literals or substitutes constants
in their place. We denote by φ↾ρ the substituted formula
φ(ρ(x1), . . . , ρ(xn)), with the convention that every resulting
occurrence of ¬¬xi is replaced by xi. A restriction is a
particular case of a variable substitution, where all variables
are mapped to either 0, 1, or themselves. We say that a proof
system S is closed under substitutions (respectively, closed
under restrictions) if there exists a constant d ∈ N such that for

every tautology φ and every literal substitution (respectively,
restriction) ρ, it holds that sizeS(φ↾ρ) ≤ sizeS(φ)

d. All the
explicit proof systems dealt with in this work (i.e., the ones
described below, like Resolution or Frege or Extended Frege
systems) are closed under literal substitutions. In these cases,
a proof of the substituted formula can be obtained directly
by applying the substitution line by line to every formula
appearing in a proof π of φ, and we hence denote by π↾ρ the
corresponding substituted proof of φ↾ρ.

1) Resolution: A central proof system in this work is
Resolution (Res). We usually see this as a refutation system for
CNF formulas. Accordingly, we sometimes write π : Res ⊢ ¬φ
for a CNF formula φ, to mean that π is a Resolution refutation
of φ, hence a proof of the tautology ¬φ. In this way, Res is a
Cook-Reckhow proof system for the fragment of TAUT made
of the formula of the form ¬φ, where φ is an unsatisfiable
CNF formula. Through the standard Tseitin transformation
of an arbitrary propositional formula into equisatisfiable CNF
form, Res can also be seen as a Cook-Reckhow proof system
for TAUT itself; we do not need the details of this in this paper.

A literal is a propositional atom or its negation, a clause is
a disjunction of literals, and a CNF formula is a conjunction
of clauses. We see clauses as sets of literals, and write simply
C ⊆ D to express that C is a subclause of D. A Resolution
refutation of an unsatisfiable CNF formula φ = C1 ∧ · · · ∧Cm

over variables x1, . . . , xn is a sequence D1, . . . , Ds of clauses
over x1, . . . , xn such that Ds = ⊥, denoting the empty clause,
and for every i ∈ [s− 1], the clause Di either (a) is one of the
clauses C1, . . . , Cm of φ, or (b) is a weakening of a previous
clause, meaning that Di ⊇ Dj for some 1 ≤ j < i, or (c)
has been obtained from two previous clauses Dj = A ∨ x and
Dk = B∨¬x, for j, k < i, by an application of the Resolution
rule:

A ∨ x B ∨ ¬x (Res)
A ∨B

We say that A∨B is obtained by resolving over x. The length
of π, denoted by length(π), is s.

To every Resolution refutation π we can associate a directed
acyclic graph in a natural way, and we often do so implicitly.
We denote by depth(π) the length of the longest path in the
dag, starting from the root labeled by the empty clause ⊥. The
number of vertices in this graph is precisely length(π).

We will also deal with a mild extension of the Resolution
system, known as k-DNF Resolution [66], denoted Res(k)
for k ≥ 1. The system Res(k) is also a refutational system,
but lines are k-DNF formulas, which are unbounded fan-in
disjuctions of k-terms, conjunctions of up to k literals. A clause
is a 1-disjunction. The system consists of a weakeaning and
an introduction rule, together with a Cut rule,

A (Weak)
A ∨B

A ∨ ℓ1 B ∨ (ℓ2 ∧ · · · ∧ ℓs)
(∧-Intro)

A ∨B ∨ (ℓ1 ∧ · · · ∧ ℓs)
A ∨ (ℓ1 ∧ · · · ∧ ℓs) B ∨ ¬ℓ1 ∨ · · · ∨ ¬ℓs

(Cut)
A ∨B

where A and B are k-DNF formulas and s ≤ k.
It is easy to see that Resolution (Res) corresponds to Res(1).
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2) Frege systems: Through this work we reason about
Resolution refutations within much stronger systems for
propositional logic. A Frege system [65] consists of a finite
set of axiom schemas and inference rules that are sound and
implicationally complete for the language of propositional
tautologies built from the Boolean connectives negation (¬),
conjunction (∧), and disjunction (∨). A Frege proof is then
a sequence of formulas where each formula is obtained by
either substitution of an axiom schema or by application of
an inference rule on previously derived formulas. The specific
choice of rules does not affect proof size up to polynomial
factors, as long as there are only finitely many rules and these
are sound and implicationally complete [65]. We refer to Cook
and Reckhow [65] or Krajı́ček [60, §2.1] for specific examples
of choices for these rules and axioms. One can alternatively
define Frege systems in the formalism of Natural Deduction
or the Sequent Calculus for classical propositional logic, but
we will not be concerned with these syntactic details.

Of central importance for us is the Extended Frege (EF)
system [65], in which proof lines can be succinctly written as
Boolean circuits rather than formulas [67]. In general, for a
circuit class C, one can consider the proof system C-Frege, in
which lines are restricted to be Boolean circuits of that type.
We are particularly interested in the AC0

d -Frege systems, in
which lines are restricted to be Boolean circuits of unbounded
fan-in and constant depth d. We also consider more generally
bounded-depth Frege systems, where the depth d is bounded,
but not necessarily a constant.

For bounded-depth Frege systems, we have strong lower
bounds available. The most famous such lower bound is the
one for the Pigeonhole Principle (PHP). For every m ∈ N
and n ∈ N such that m > n, the formula PHPm

n stands for
the CNF formula over variables pi,j for i ∈ [m] and j ∈ [n]
consisting of the clauses∨
j∈[n]

pi,j for all i ∈ [m], (PHP-1)

¬pi,j ∨ ¬pi,j′ for all i ∈ [m] and j, j′ ∈ [n], j ̸= j′ (PHP-2)
¬pi,j ∨ ¬pi′,j for all i, i′ ∈ [m], i ̸= i′ and j ∈ [n] (PHP-3)

We sometimes denote by PHPn the formula PHPn+1
n .

Strong lower bounds are known on the proof complexity of
the pigeonhole principle for bounded-depth Frege systems [68]–
[70]. Here we state only a simplified version of the best such
lower bound, proven by Håstad [33].

Theorem II.1 ([33]). For every d ≤ O(log n/ log logn),
it holds that depth-d Frege systems require size at least
exp

(
Ω(n1/(4d−2))

)
to prove ¬PHPn.

Finally, we often consider extensions of Extended Frege by
sets of additional axioms. For a set A ⊆ TAUT of tautologies
that is recognizable in polynomial time, the system EF + A
refers to Extended Frege extended with the axiom schemas that
allow (formula) substitution instances of any formula in A.

3) Automatability and proof search: The notion of of
automatability, introduced by Bonet, Pitassi, and Raz [1], is a

natural formalization of efficient proof search in propositional
proof system. We say that a proof system S is automatable
if there exists a constant c ∈ N and an algorithm that given
a propositional tautology φ, outputs an S-proof of φ in time
(|φ| + sizeS(φ))

c, meaning that the proof search algorithm
succeeds in finding a proof of size polynomial in the size of
the shortest one.

Even when a system might not be automatable, it seems
natural to ask whether there exists a system Q that p-
simulates S and is itself automatable. In this case, we say
that S is weakly automatable [22]. Weak automatability is
equivalent to the existence of an automating algorithm where
the output proof belongs to a system Q ≥p S rather than S
itself. In particular, weak automatability is closed downwards
under p-simulation.

A more restrictive notion of proof search is given by the
Proof Size Problem. Associated to any propositional proof
system S we can define the Proof Size Problem for S (PSPS),
defined as the language

PSPS := {(φ, 1s) | there is an S-proof of φ in size s}.

Automating S entails approximating minimum proof-size to a
polynomial, in polynomial time.

B. Bounded arithmetic

We heavily rely on the connection between propositional
proof complexity and (weak) theories of arithmetic. We assume
familiarity with basic knowledge of first-order logic and
introduce the main theories we are concerned with.

1) The theories PV1 and S12: Theories of bounded arithmetic
capture various forms of feasible reasoning and act as a uniform
counterpart of propositional proof systems. The main tool to
capture feasibility in mathematical reasoning is to bound the
complexity of formulas over which one can apply induction.

a) Cook’s PV1: Cook’s theory PV1 [71], [72] is an
attempt to make precise the idea of polynomial-time reasoning.
It is a universal theory whose vocabulary LPV consists of a
function symbol for each polynomial-time function, and the
axioms are precisely the recursive definitions of these functions
via composition and limited recursion on notation, in the style
of Cobham’s functional definition of FP [73]. The theory
further admits induction on quantifier-free formulas, which
define precisely polynomial-time predicates.

The formal definition of PV1 is rather technical and the
details are not particularly relevant to our proofs, so we refer
the reader to Krajı́ček’s textbook [62, Definition 5.3] for the
details. The reason we rarely care about the technicalities of
PV1 is that we often work instead in the theory S12 of Buss,
which happens to be conservative over PV1 for the classes of
formulas we are interested in. We discuss this next.

b) Buss’s S12: We see S12 as a theory sitting in between
Robinson’s Arithmetic Q and Peano Arithmetic PA. Let LPA de-
note the language of Peano Arithmetic, LPA := {0, 1,+, ·, <}.
The axioms of PA consist first of the axioms of Robinson’s
arithmetic Q, which define the basic behavior of the symbols
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of LPA (see, for example, [60, §7.4.3] for a definition), together
the Induction Scheme

(φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(x), (INDφ)

available for every formula φ.
The language of S12 is the first-order language of bounded

arithmetic, LBA := {0, 1,+, ·, <, | · |, ⌊·/2⌋,#}. This extends
the language of Peano Arithmetic LPA above by the symbols
|x|, ⌊x/2⌋ and x#y. The standard interpretation of ⌊x/2⌋ is
clear. The notation |x| denotes the length of the binary encoding
of the number x, ⌈log(x+ 1)⌉, while the smash symbol x#y
stands for 2|x|·|y|.

For a term t in the language of bounded arithmetic and a
variable x that does not appear in t, a formula of the form
∀x(x < t → φ(x)) or ∃x(x < t ∧ φ(x)) is called a bounded
formula. The quantifiers guarded by the bounds on x are
called bounded quantifiers and we simply write ∀x < t(φ(x))
and ∃x < t(φ(x)). If the bounded quantifiers are of the
form ∀x < |s| of ∃x < |s| for some term s, then they are
called sharply bounded quantifiers. The hierarchy of bounded
formulas consists of the classes Σb

n (and Πb
n), for n ≥ 1,

which are defined by counting the alternations of bounded
quantifiers ignoring the sharply bounded ones, starting with an
existential (respectively, universal) one. The class ∆b

n consists
of all formulas that admit an equivalent definition in both Σb

n

and Πb
n. In particular, the class ∆b

0 stands for all formulas with
sharply bounded quantifiers only.

The theory S12 of Buss [74] extends Robinson’s arithmetic Q
by a set BASIC of simple axioms for the new function symbols
(see, e.g., [62, Definition 5.2.1] for the complete list). On top
of this, the theory has the Polynomial Induction scheme (PIND)
for Σb

1-formulas: for every φ ∈ Σb
1, the theory contains the

axiom

φ(0) ∧ ∀x(φ(⌊x/2⌋) → φ(x)) → ∀xφ(x). (PINDφ)

When working over S12, we often invoke instead the schema
for Length Induction,

φ(0) ∧ ∀x(φ(x) → φ(x+ 1)) → ∀xφ(|x|), (LINDφ)

made available for all Σb
1-formulas. This form of induction is

provable from (PINDφ) for φ ∈ Σb
1 [62, Lemma 5.2.5].

Unlike LPV, the language LBA of bounded arithmetic does
not contain a function symbol for every function in FP.
However, every such f ∈ FP is Σb

1-definable in S12, meaning
that there exists a Σb

1 formula whose interpretation over the
standard model N defines f and such that S12 proves the totality
of this definition. Thus, in the rest of the paper we choose to
use the theory S12(LPV), which is the theory S12 in the language
of bounded arithmetic extended by all PV function symbols,
meaning that we have a fresh symbol for each function in FP,
and induction is now available for all Σb

1(PV) formulas. The
theory S12(LPV) is fully conservative over S12. In what follows
we abuse notation and denote this simply as S12.

The final key fact for us is that all ∀Σb
1 formulas provable

in S12 are already provable in PV1. That is, the theory S12 is

∀Σb
1-conservative over PV1 [74]. We use this in some of the

formalizations, where we carry out arguments in S12 but later
appeal to its proof in PV1. For a proof of this fact, see, for
example Krajı́ček’s textbook [62, Thm. 5.3.4 and Cor. 7.2.4].

2) Cook’s propositional translation: Following Krajı́ček [60,
§8.6], we say that a theory of arithmetic T corresponds to a
propositional proof system S if (i) T can prove the soundness
of S and (ii) every universal consequence ∀xφ(x) of T , where
φ is quantifier-free, admits polynomial-size proofs in S when
suitably grounded into a sequence of propositional formulas.
(Pudlák [21] alternatively says that S is a weak system of the
theory T .)

We are interested in the correspondence between PV1 and
Extended Frege (EF). In this case, the process used to turn first-
order formulas into propositional ones is known as (Cook’s)
propositional translation, introduced in his seminal paper
on PV [71]. Given a quantifier-free formula φ(x), Cook’s
translation is a polynomial-time construction sending φ to a
sequence of polynomial-size propositional formulas {JφKn}n∈N
such that for every n ∈ N, the formula JφKn ∈ TAUT if and
only if N |= φ(n). See [60, §12.3] or [63, §6.1] for a complete
definition of the construction. Cook then observed that, under
this translation, PV1 and EF do indeed correspond to each
other.

Theorem II.2 (Cook’s correspondence theorem [71]). The
theory PV1 and the proof system Extended Frege correspond
to each other. That is,

(i) PV1 proves the soundness of EF;
(ii) if φ(x) is a quantifier-free formula in the language

LBA(PV) and PV1 ⊢ ∀xφ(x), then there exists a
polynomial-time computable function f such that for every
n ∈ N, it holds that f(1n) : EF ⊢ JφKn.

A proof of the theorem can be found in Krajı́ček’s text-
book [60, Theorem 12.4.2].

C. The REF formulas

The main character in this paper is the so-called REF formula.
Given a propositional CNF formula φ and a size parameter
s ∈ N, the formula REFs(φ) states that φ has a Resolution
refutation consisting of at most s clauses.

It is important to choose an encoding that is simultaneously
natural from a modeling point of view while not making the
formulas artificially hard to refute. At a basic level, the main
property that such an encoding should satisfy is that for a
concrete φ and s, the formula REFs(φ) should be satisfiable
if and only if there is a Resolution refutation of φ in at most s
clauses. It also seems natural to require that a Resolution
refutation should be readable in polynomial time from a
satisfying assignment to REF.

While different encodings have appeared in the literature,
they tend to agree on a few basic ideas. The formula REFs(φ)
consists of s so-called blocks of variables, each representing a
clause in the purported Resolution refutation. Each block has
variables to represent the literals that appear in this block, how
it was obtained (resolved or weakened from an axiom), and
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it contains pointer variables to indicate from which blocks it
was derived.

a) The unary encoding of Pudlák: Pudlák [5] uses the
seemingly most standard encoding, which we refer to as
the unary encoding for REF. He used it to prove that the
canonical pair of Resolution is symmetric. This encoding
employs pointers in unary, meaning that for every block B ∈ [s],
there are up to s additional variables to point at the blocks
from which B was derived.

b) The relativized unary encoding of Atserias and Müller:
Atserias and Müller [13] start by studying Pudlák’s encoding.
They proved suitable so-called index-width lower bounds for
it in Resolution, but they were unable to prove a size lower
bound for it. They then introduced a relativized version, in
which each block can be possibly enabled or disabled. If it
is disabled, then the block is not used towards the refutation,
and its associated clauses are immediately satisfied. These
additional enabling variables made it possible to prove the
size lower bound from the index-width lower bound for the
unrelativized encoding. We refer to this second encoding as
the relativized unary encoding.

We note, however, that the change of encoding is not the
source for hardness. Garlı́k [41] proved that even when using
the original encoding of Pudlák, the formulas are hard for
Resolution whenever the underlying CNF is unsatisfiable.

c) The binary encoding of de Rezende et al.: In their
alternative proof of the lower bound on REF formulas, de
Rezende, Göös, Nordström, Pitassi, Robere, and Sokolov [18]
introduce an encoding of REF where pointers are encoded in
binary. Informally, for every block B ∈ [s], there are O(log s)
variables used encode the value B′ ∈ [s] of the block(s) from
which B was derived. We refer to this as the binary encoding.
While this encoding also includes the enabling variables of
the relativized encoding, these are inessential, since one can
always assign the pointers in a dummy fashion to effectively
disable a block.

We contend that the unary relativized encoding is both the
most natural as well as the most versatile. We see three reasons
for this:

1) thanks to the enabling variables, one can naturally turn
a Resolution refutation of t < s clauses into a satisfying
assignment to REFs(φ) simply by disabling s− t blocks
that are not needed, while in the relativized encoding one
needs to fill in the remaining s − t clauses with some
dummy content;

2) the enabling variables make the random restriction argu-
ment leading to the size lower bound much simpler to
prove, and Garlı́k has shown that the hardness does not
comes from this change in syntax;

3) when using a unary encoding rather than the binary one
of de Rezende, Göös, Nordström, Pitassi, Robere, and
Sokolov, one can easily restrict some pointers to get an
instance of REFt(φ) for every t < s, while in the binary
encoding, after disabling a block, the binary pointers
might still be able to point to it, making the formulas
more delicate to handle after applying a restriction.

We remark that the choice between unary and binary
encodings is ultimately inessential, and all the results in this
paper can be reproven for the binary encoding. We choose the
unary encoding mainly for reason (3) above, which simplifies
the write-up.

We now define the formula in detail.
d) The variables of REFs(φ): Here, we assume φ

is a CNF formula over n variables x1, . . . , xn and m
clauses and define the following variables, where Litn :=
{x1, . . . , xn,¬x1, . . . ,¬xn} and each variable has the follow-
ing intended meaning:

• a-litAℓ : literal ℓ ∈ Litn is present in the clause A ∈ [m]
of φ;

• enableB : block B ∈ [s] is enabled;
• derivedB : block B ∈ [s] is obtained by a Resolution step;
• weakBA : block B ∈ [s] is obtained by weakening from

clause A ∈ [m] of φ;
• litBℓ : literal ℓ ∈ Litn is present in the block B ∈ [s];
• resBxi

: block B ∈ [s] is obtained by resolving over the
variable xi;

• lpointBB′ : block B ∈ [s] is resolved on the left from block
B′ ∈ [s], B′ < B;

• rpointBB′ : block B ∈ [s] is resolved on the right from
block B′ ∈ [s], B′ < B.

Building on these variables, the REFs(φ) formula is defined
as follows. We write the clauses as implications for the sake
of readability.

Definition II.3 (The REF formulas). Let n,m, s ∈ N, and
let Litn := {x1, . . . , xn,¬x1, . . . ,¬xn} denote the of possible
literals over n variables. The REFs(φ) formula is built from
the variables defined above, together with the conjunction of
the following clauses:

For every B,B′ ∈ [s], B′ < B, i ∈ [n], ℓ ∈ Litn, ℓ ̸= xi,(
enableB ∧ resBxi

∧ lpointBB′ ∧ litB
′

ℓ

)
→ litBℓ ; (REF-1)

for every B,B′ ∈ [s], B′ < B, i ∈ [n], ℓ ∈ Litn ℓ ̸= ¬xi,(
enableB ∧ resBxi

∧ rpointBB′ ∧ litB
′

ℓ

)
→ litBℓ ; (REF-2)

for every B ∈ [s], A ∈ [m], ℓ ∈ Litn,(
enableB ∧ weakBA ∧ a-litAℓ

)
→ litBℓ ; (REF-3)

for every B ∈ [s],(
enableB ∧ derivedB

)
→

∨
i∈[n]

resBxi
; (REF-4)

for every B ∈ [s],(
enableB ∧ derivedB

)
→

∨
B′∈[s]
B′<B

lpointBB′ ; (REF-5)

for B ∈ [s],(
enableB ∧ derivedB

)
→

∨
B′∈[s]
B′<B

rpointBB′ ; (REF-6)

for every B ∈ [s],
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(
enableB ∧ ¬derivedB

)
→

∨
A∈[m]

weakBA ; (REF-7)

for everyB,B′ ∈ [s], B′ < B,(
enableB ∧ lpointBB′

)
→ enableB

′
; (REF-8)

for every B,B′ ∈ [s], B′ < B,(
enableB ∧ rpointBB′

)
→ enableB

′
; (REF-9)

for every ℓ ∈ Litn,

¬litsℓ ; (REF-10)
enables. (REF-11)

Remark II.4. Our encoding of REF has fewer axioms than that
of [13]. For example, we do not require that if a block B is
resolved on the left by variable x from block B′, then B′ should
contain x, or we do not require that for every resolution step
there is a unique resolved variable. We remark that soundness
still holds and REF is satisfiable if and only if there exists a
refutation of length at most s, which can easily be read from
the satisfying assignment to the REF formula. We also remark
that the lack of these axioms does not affect the extraction
algorithm or the lower bound in any way: while removing
axioms could in principle make the lower bound easier to
prove, the algorithm works just as well if we added the missing
axioms, and our lower bound proof still goes through with
the additional axioms. This more succinct encoding, however,
makes it easier to formalize the upper bound construction in
Resolution.

Remark II.5 (Number of variables). The formula REFs(φ) is
defined over N = Θ(s2 + sm + sn + mn) variables and
M = Θ(s2n2 + smn) clauses. For the case when the a-lit
variables are restricted to encode a k-CNF formula over n
variables and s = nc for some constant c ≥ 1, we have
m = O(nk) and N = O(nmax{2c,c+k}).

e) Blocks and block-width: If a variable is part of a
block Bi, we say that it mentions Bi. An important measure for
us will be the block-width of a given clause C over the variables
of REFs(φ). This is defined as the number of different blocks
mentioned by the variables of the literals in C, not counting
the root block B⊥. We denote this measure by bw(C), and
generalize it to refutations by taking bw(π) to be the maximum
block-width over all the clauses in π.

III. THE PROOF ANALYSIS PROBLEM: DEFINITIONS AND
BASIC FACTS

For a CNF formula φ(x1, . . . , xn), we denote by REFs(φ)
the propositional formula claiming that there exists a Resolution
refutation of φ in size s. Different encodings of this formula
have been considered in the literature. For our purposes, REF
consists of s of blocks of variables, each of them describing a
clauses in a purported Resolution refutation of φ of size s. (See
Section II-C for a full rendering of the variables and clauses
involved in REFs(φ).)

We are interested in the following decision problem.

Definition III.1 (The Proof Analysis Problem, PAPQ). Let Q
be a propositional proof system. We define the Proof Analysis
Problem for Q to be the language

PAPQ := {(φ, π, 1s) | φ ∈ SAT and π : Q ⊢ ¬REFs(φ)}.

We denote by PAPQ[s(n)] the problem where the size parame-
ter s is restricted to be at least s(n) and n denotes the number
of variables of φ.

The problem asks, given the proof of a Resolution lower
bound in a fixed proof system Q, to decide whether the
underlying formula is satisfiable or not. Note that whenever
φ is satisfiable there is no Resolution refutation and thus any
lower bound holds, so the problem is well-defined.

Analogous to the notion of whether a proof system is
automatable, PAP naturally induces a notion of whether,
for a given proof system, its Resolution lower bounds are
“analyzable”.

Definition III.2 (Analyzability). We say that a propositional
proof system Q is analyzable if there exists some constant
c > 0 such that PAPQ[n

c] ∈ P.

Remark III.3. It might seem more intuitive to define a proof
system Q to be analyzable if PAPQ ∈ P, without restrictions
on the size parameter. Note, however, that for most reasonable
proof systems, the language PAPQ taken as a whole contains
some degenerate instances that make the problem trivially NP-
hard. For example, if the size parameter is set to s = 1, then
certainly proving a Resolution lower bound against φ is easy
already for Resolution itself, and we can map a CNF formula φ
to the PAPQ-instance (φ, π, 1) for some easy to construct Q-
proof π that checks there is no Resolution refutation of φ in
one clause.

It is easy to see that for every Cook-Reckhow system Q,
the problem PAPQ is in NP. Similarly, we note that unlike
automatability, analyzability is naturally downwards-closed
under p-simulations. Namely, if S is p-simulated by Q and Q
is analyzable, so is S; this is not the case with automatability,
where a search algorithm for Q may not be used to search for
proofs in a weaker S.

The following is a corollary of the results of Atserias and
Müller [13]. Here, by P-uniform we mean the standard notion
of uniformity by which there is a polynomial-time descriptor
Turing machine that on input 1ℓ outputs the circuit solving the
problem for inputs of size ℓ (see, e.g., [75, Definition 6.12]
or [76]).

Proposition III.4. It holds that PAPRes[n
2] is in P-uniform

AC0. That is, Resolution is analyzable.

Proof. Let us first describe the general polynomial-time al-
gorithm that puts PAPRes[n

2] in P, and we later elaborate
on how this can be computed in P-uniform AC0. Indeed, by
the Resolution lower bound on REF formulas (Theorem I.5),
there exists ε > 0 such that for every s ∈ N, if a formula φ
over n variables is unsatisfiable, then a correct Resolution
refutation π of REFs(φ) must have size |π| > 2ε·s/n. Given
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an input (φ, π, 1s) to PAPRes[n
2], to decide if the instance

belongs in the language, it suffices to check (i) that π is a
correct Resolution refutation of REFs(φ) and (ii) that |π| is
smaller than the lower bound 2ε·s/n. If (i) fails, we immediately
reject, and otherwise, if (ii) fails, the input size is large enough
to brute-force SAT in polynomial time. Here we use the fact
that s ≥ n2, hence |π| ≥ 2ε·s/n ≥ 2εn, and thus the input size
is large enough.

Let us now argue that this entire computation is possible
within P-uniform AC0. For the sake of precision, let us fix
the following natural binary encoding for PAPRes. An input
(φ, π, 1s) will be of the form (1n, 1m, C1, . . . , Cm, 1

t, π, 1s).
Here, the first part of the tuple corresponds to the encoding of φ,
a CNF formula over n variables and m clauses C1, . . . , Cm,
and we assume that these clauses are initially represented
as strings of length 2n with indicators for every possible
literal. The Resolution refutation of REFs(φ) is encoded
by 1t and π, where π is an assignment to the N :=
N(n,m, t, s) = poly(n,m, t, s) variables of REFt(REFs(φ)),
as per Section II-C, and the number of variables N can be easily
computed in polynomial time. For the purpose of unique decod-
ing, we assume that the tuple (1n, 1m, C1, . . . , Cm, 1

t, π, 1s)
is encoded by bit-doubling: each bit is duplicated and 01 is
used as separators. We assume that there are no separators
between the clauses C1, . . . , Cm, so a correct input contains
only five separators.

Now, when dealing with binary strings of even length ℓ,
there are at most O(ℓ4) possible ways of interpreting such
strings as a tuple of the form (1n, 1m, C1, . . . , Cm, 1

t, π, 1s).
This is because we can choose values for n, m, t and s in
the interval [ℓ/2− 5], where ℓ/2− 5 comes from the fact that
we duplicated every bit and introduced 10 bits for the five
separators between 1n, 1m, C1, . . . , Cm, 1t, π, and 1s, not
counting separators between C1 and Cm. One can then check
that this choice of n, m, t and s conforms to the desired pattern:
the segment for the clauses C1 to Cm has length exactly 2nm,
and the segment for π has length exactly N = N(n,m, t, s),
as per Remark II.5. That is, it must hold that ℓ = 2(n+m+
2nm+ t+N(n,m, t, s) + s) + 10 and s ≥ n2. There are at
most O(ℓ4) such choices for (n,m, t, s) ∈ [ℓ/2− 5]4, hence
the upper bound. Furthermore, it is easy to see that, due to the
bit-doubling, every string can only encode correctly one input
of the form (1n, 1m, C1, . . . , Cm, 1

t, π, 1s), so the decoding is
unique.

The P-uniform descriptor machine for inputs of even length ℓ
now works as follows. On input 1ℓ, for ℓ even, it tries all
possible O(ℓ4) ways of separating the lengths, and for each
interpretation (n,m, t, s) of the lengths it constructs a different
constant-depth Boolean circuit Dn,m,t,s, as follows.
(a) If the interpretations of the lengths is inconsistent, in the

sense that the string cannot correspond to something of
the form (1n, 1m, C1, . . . , Cm, 1

t, π, 1s), then it outputs
the constant circuit 0.

(b) If the interpretation of the lengths is valid and |π| < 2ε·s/n,
then it simply constructs the circuit that checks that π is
a correct Resolution refutation of REFs(φ) in at most t

clauses; that is, it outputs the formula REFt(REFs(φ)),
which itself depends on the variables encoding φ. Since
REF formulas are in CNF, nesting these together with φ
will result in a total depth of 5.

(c) If the interpretation of the lengths is valid and |π| ≥ 2ε·s/n,
then the descriptor outputs the conjunction of two circuits:
one is the same as before, checking the correctness of
π as a refutation of REFs(φ) in at most t clauses, and
the other is the trivial circuit of size poly(n,m) · 2n that
brute-forces the satisfiability of φ. More formally, this
is a big disjunction of fan-in 2n, where each wire goes
to the formula SAT(φ, α) for different hard-wired values
of α ∈ {0, 1}n. Since SAT(φ, α) is a CNF formula, this
brute-forcing circuit has depth 3, and combined with the
circuit checking the correctness of π, the entire circuit
has depth 5 in this case.

For each interpretation of the lengths there is also a circuit
Correctn,m,t,s that verifies that the input correctly encodes a
PAPRes instance of the right size. This amounts to checking
that the separators are in the right place and the double-bit
encoding is correctly implemented, which can all be verified
in depth 3.

Finally, the descriptor machine outputs the circuit

Rℓ :=
∨

(n,m,s,t)∈[ℓ/2−5]4

Dn,m,t,s ∧ Correctn,m,t,s (1)

consisting of the disjunction of all the circuits above for every
interpretation of the lengths.

The final circuit Rℓ correctly computes PAPRes[n
2] on inputs

of even length ℓ, has depth 6 and polynomial size. Indeed,
the constructions (a) and (b) above both have polynomial size,
and whenever we construct the exponential-size circuit in (c),
it is with respect to a segment of the string that has itself
size exponential in n. Finally, the descriptor machine runs in
polynomial time given only the length ℓ of the input string x,
so we can conclude that PAPRes[n

2] is in P-uniform AC0.

The fact that PAPRes is so easy makes it natural to ask
whether the same is true for the search version of the problem.

Definition III.5 (Search version of PAP). For a propositional
proof system Q, we denote by FPAPQ the search version of
the Proof Analysis Problem for Q, defined as follows. Given a
CNF formula φ, a size parameter s in unary and a proof π such
that π : Q ⊢ ¬REFs(φ), output either a satisfying assignment
for φ, if φ ∈ SAT, or 0 otherwise. Similarly to PAPQ[s(n)],
we define FPAPQ[s(n)] to be the search problem where the
size parameter is at least s(n).

If we impose a polynomial upper bound on the size of π,
then by the lower bound on REF formulas, there is always a
satisfying assignment for φ, and the problem FPAPRes[n

c] for
any c > 0 is in TFNP. The fact that PAPRes[n

2] ∈ P, does
not, however, directly imply that FPAPRes[n

c] ∈ FP for any
c > 0. Namely, it is not clear that given a polynomial-size
proof π of REFs(φ) one can extract a satisfying assignment
of φ, even if one can conclude that φ is satisfiable. We show
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in Section IV that FPAPRes is in FP—although the algorithm
is not quite as straightforward as the one for the decision
problem.

We see PAP and the analyzability of a proof system as
closely related to automatability. The following proposition
captures this idea and underlines the relevance on PAP in
showing hardness of automatability.

Proposition III.6. Let Q ≥ Res. If Q is both analyzable and
automatable, then P = NP.

Proof. If Q is analyzable and automatable, this means that
PAPQ[n

c] ∈ P for some constant c > 0, and that there is
an automating algorithm A for Q. We call the polynomial-
time algorithm for PAPQ[n

c] an analyzer and observe that
these two combined can solve 3SAT in polynomial time as
follows. Given a 3-CNF formula φ, construct the formula
REFnc(φ), stating that φ does not have Resolution refutations
of size nc. Since Q ≥ Res, by the upper bound construction
as in [5, Theorem 4.1] or [13, Lemma 11], whenever φ is
satisfiable, there will be size-nO(1) refutations in Resolution,
and hence also in Q, and the automating algorithm A will
succeed in finding some refutation in polynomial time. Feed
this refutation to the Q-analyzer to decide whether φ ∈ SAT.
If the automating algorithm failed to output a polynomial-size
proof, then we would already know that φ ̸∈ SAT.

The previous proposition can be seen as an abstract way
of stating the NP-hardness of automating Resolution too.
Since PAPRes[n

2] ∈ P, that means that Resolution cannot
be automatable unless P = NP. In Section V we study the
possibility of analyzing algorithms for strong proof systems
actually leading to the hardness of their automatability—and
establish that this is highly unlikely.

IV. THE EXTRACTION ALGORITHM

This section proves that the search version of the Proof
Analysis Problem for Resolution is in FP. Our algorithm (in
fact, two algorithms) arise from closely observing the lower
bound on the REF formulas and attempting to make it fully
constructive, in a style that would make them amenable to
formalization in weak theories of arithmetic like PV1 (in the
style of Cook and Pitassi [35]).

Recall that the lower bound can be presented in two steps:
first, a random restriction argument takes a small refutation and
produces a low block-width refutation of a restricted formula,
followed by a block-width lower bound for this restricted
formula, which overall bounds the size of the original refutation.

Our algorithm works analogously. On input a refutation π of
REFs(φ), it first finds a restriction ρ such that π↾ρ is a refutation
of a restricted version of REFs(φ) and has low block-width.
Then, we have a second algorithm that, inspired by the proof of
the width lower bound, analyses this low block-width refutation
and extracts a satisfying assignment.

We present the algorithm in two steps. First, two alternatives
to perform block-width reduction are described in Section IV-A.
These correspond, respectively, to a random restriction and

a deterministic restriction argument similar to the one in the
proof of the lower bound for the REF formulas. In Section IV-B
we explain how to design the algorithm that analyzes low
block-width refutations, which is essentially the Prover-Delayer
strategy behind the block-width lower bound for the REF
formulas. Putting them together yields the desired procedure.

A. The block-width reduction algorithm

Recall that we crucially assume that in our definition of the
REF formula there is a variable enablei for every block i ∈ [s]
that allows us to disable that block (see Definition II.3). For
succinctness, we often denote enablei simply by ei and refer
to is as an enabling variable.

Let us first define a kind of restriction that will come up a
lot in our arguments.

Definition IV.1 (Disabling restrictions). We say that a re-
striction ρ ∈ {0, 1, ∗}N to the N variables of REFs(φ) is
d-disabling if it satisfies that (i) exactly d blocks are disabled,
and the rest are all enabled, (ii) every variable belonging to a
disabled block is assigned a value, and (iii) no other variable
is assigned.

A key property of disabling assignments is that they can
never falsify any axioms of REFs(φ), all the enabling variables
disappear after the restriction and REFs(φ)↾ρ is essentially an
instance of REFs−d(φ), except there are some pointer variables
pointing to the d disabled blocks that are still hanging.

A first approach to perform block-width reduction in inspired
by random restriction arguments, and requires randomness.

Lemma IV.2 (Randomized block-width reduction). Let p ∈
[0, 1) and let N be the number of variables of the REFs(φ)
formula for some CNF formula φ over n variables. There exists
a randomized algorithm R taking as input 1N , and outputting
an ⌊s/2⌋-disabling restriction ρ ∈ {0, 1, ∗}N , such that for
every Resolution refutation π of the formula REFs(φ), the
following properties hold:

(i) the restriction ρ does not falsify REFs(φ);
(ii) with probability at least p, the block-width of π↾ρ is at

most O (log |π| − log(1− p));
(iii) the running time of R(1N ) is O(N).

Proof. The proof follows closely the random restriction argu-
ment of [18, Section 6.3]. For simplicity, let us assume s is
even. (Note that, without loss of generality s can be even, since
if π is a correct refutation of REFs(φ) and s is odd, then π
can be turned into a refutation of essentially REFs−1(φ) by
hitting π with the restriction that disables and fully restricts
one block).

Assume the root block corresponds to block B⊥, which is
not counted towards block-width, and consider the following
random restriction: pair all s blocks into s/2 pairs, and for
each pair, with probability 1/2, decide which block in the pair
is going to be disabled. Now, if a block is disabled, all of
its remaining variables are assigned uniformly at random. We
denote by ρ the restriction obtained in this way, which the
algorithm outputs.
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We claim that with probability at least p, the restriction
succeeds in lowering the block-width of any Resolution
derivation π to O(log |π|− log(1− p)). Indeed, if ℓ is a literal
corresponding to the variable ei determining whether a certain
block is disabled, then Prρ[ℓ↾ρ = 1] = 1/2. For every other
literal ℓ in a block Bi,

Pr
ρ
[Bi is disabled and ℓ↾ρ = 1 ] (2)

= Pr
ρ
[Bi is disabled] · Pr

ρ
[ℓ↾ρ = 1 | Bi is disabled] (3)

=
1

2
· 1
2
=

1

4
. (4)

Hence, for every literal ℓ not from B⊥, Prρ[ℓ↾ρ = 1] ≥ 1/4.
Now, if C is a clause of block-width at least w, we have

that
Pr
ρ
[C↾ρ ̸= 1] ≤ (3/4)w/2 , (5)

where the 1/2 in the exponent comes from the fact that if
two consecutive blocks are present, meaning that they were
paired together and only one of them was enabled, their values
depend on each other.

Then, if π was indeed a Resolution derivation of REFs(φ),
by a union bound,

Pr
ρ
[bw(π↾ρ) ≥ w] ≤ length(π)·(3/4)w/2 ≤ |π|·(3/4)w/2, (6)

which is the failure probability for property (ii) in the statement.
For success probability at least p, we want to choose w such
that |π| ·(3/4)w/2 ≤ 1−p. This bound is met by choosing w ≥
2(log(|π|/(1− p))/(log 4/3)), meaning that with probability p,
the restriction ρ will satisfy all clauses of at least this width.

It suffices to argue that properties (i) and (iii) are also
satisfied. Indeed, by the way we designed the restriction, after
applying ρ there are no disabling variables left and all variables
in the disabled blocks have been restricted, to this is exactly
s/2-disabling.

As for the running time, the algorithm is simply sampling
the restriction, which takes time O(N).

We now move on to a fully deterministic algorithm that
takes as input an actual refutation π and outputs a restriction
that always manages to reduces the block-width.

Lemma IV.3 (Deterministic block-width reduction). There
exists a constant c > 0 and a deterministic algorithm taking
as input a Resolution refutation π of the formula REFs(φ)
over N variables and outputting a d-disabling restriction ρ ∈
{0, 1, ∗}N with d ≤ c/2 ·

(√
s log |π|

)
such that

(i) the restriction ρ does not falsify REFs(φ);
(ii) the block-width of π↾ρ is at most c ·

(√
s log |π|

)
;

(iii) the algorithm runs in time poly(|π|, s).

Proof. We employ a greedy strategy to construct the restriction,
meaning that we look at all the clauses of high block-width and
we iteratively choose to restrict a literal that kills a significant
fraction of these clauses.

More formally, let w be a parameter to be optimized later,
and given π, let W denote the set of all clauses in π with

block-width at least w. Through the following iterative process
we will enable and disable some blocks. Whenever we enable
a block, we will also mark it as not active by keeping track of
a set ActiveBlocks ⊆ [s], meaning that when choosing greedily
the next literal to restrict, inactive blocks are not a valid choice;
and whenever we disable a block, we add it to a set D ⊆ [s]
to keep track of it.

Algorithm IV.1: Deterministic block-width
reduction

Repeat the following procedure iteratively, starting with
ρ := ∅, ActiveBlocks := [s], and D := ∅, and stop
whenever W is empty:

1) Find the most frequent block i ∈ ActiveBlocks
among the ones mentioned in the clauses in W .

2) Look at the literal ei of the variable used to disable
block i.

a) If ei appears positively in at least 1/3 of all the
clauses in W that mention block i, then set ρ :=
ρ ∪ {ei 7→ 1}, ActiveBlocks := ActiveBlocks \
{i}, W :=W↾ρ, and go back to step (1).

b) If ei does not appear positively in at least 1/3
of the clauses in W mentioning block i, then set
ρ := ρ ∪ {ei 7→ 0}, W := W↾ρ, D := D ∪ {i},
and for every other variable x of block i,
i) if x appears in W positively more often than

negatively, then set ρ := ρ ∪ {x 7→ 1}, and
W :=W↾ρ;

ii) if x appears in W negatively more often
than positively, then set ρ := ρ ∪ {x 7→ 0},
and W :=W↾ρ;

iii) repeat for every variable of block i.
c) Once all the variables of block i have been taken

care of, go back to step (1).

The procedure terminates once W is either empty or all
clauses in W mention only blocks that are no longer in
ActiveBlocks. At this point, |D| blocks have been disabled. For
the remaining blocks that were not mentioned by any clause in
W , enable all of them by setting the corresponding variables
ei 7→ 1. This completes the construction of the restriction ρ,
and the algorithm outputs ρ.

The procedure runs for at most s iterations, since each
iteration takes care of one of the blocks mentioned by the
clauses in the initial W and we never deal with a block twice.
Therefore, the algorithm runs in time poly(|π|, s).

As for the correctness of the algorithm, the restriction ρ is
d-disabling by construction for d = |D|. It is left to argue that
for a suitable choice of w, there exists a constant c > 0 such
that d ≤ c/2(

√
s log |π|) and the block-width of π↾ρ is at most

c · (
√
s log |π|).

We want to choose w so that after ℓ ≤ s iterations, the
set W becomes empty. At the first iteration, by an averaging
argument, we know that the most frequent block is mentioned
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in at least a w/s fraction of |W |. More generally, at iteration ℓ,
block-width might have decreased up to w − (ℓ − 1) and
up to ℓ − 1 blocks may have become inactive, so the same
averaging argument tells us that the most frequent active block
is mentioned in at least a (w− (ℓ− 1))/(s− (ℓ− 1)) fraction
of the clauses. Furthermore, observe that if at a given iteration
block i is the most frequent active block, we are not promised
to kill all the clauses mentioning i, but we are guaranteed to
kill at least 1/3 of them. Indeed, if we enable block i that is
because it appeared in at least 1/3 of all the clauses in W
mentioning i; and otherwise we are guaranteed to restrict at
least 1/2 of the remaining at least 2/3 fraction of the clauses
in W mentioning i, which amounts to at least 1/3 fraction.

Therefore, if ρℓ is the restriction built after ℓ iterations,

|W↾ρℓ
| ≤ |W | ·

(
1− w

3s

)
· · · · ·

(
1− w − (ℓ− 1)

3(s− (ℓ− 1))

)
(7)

≤ |W | ·
(
1− w − ℓ

3s

)ℓ

(8)

≤ |W | · e−ℓ·w−ℓ
3s . (9)

We want to ensure that for some ℓ ≤ s we achieve
|W↾ρℓ

| < 1. It suffices to have |W | · e−ℓ·w−ℓ
3s < 1. Taking

logarithms on both sides we have

ln |W | < ℓ · w − ℓ

3s
, (10)

which holds already for ℓ = ⌊w/2⌋, assuming that we have
w >

√
12s ln |π| ≥

√
12s ln |W |.

Now it suffices to choose a constant c such that w :=
c ·

√
s log |π| >

√
12s ln |π|. In this way we get that after

at most ℓ := ⌊w/2⌋ iterations, W↾ρℓ
= ∅ and thus the block-

width of π↾ρℓ
is also at most c ·

√
s log |π|. Furthermore, note

that |D| ≤ ℓ, since the algorithm only runs for at most ℓ
iterations, meaning that ρℓ is d-disabling for d ≤ ℓ = ⌊w/2⌋ ≤
(c/2)

√
s log |π|, as desired.

B. The block-width analysis algorithm

Using one of the two algorithms above, we can take a
refutation π of REFs(φ) and obtain a new refutation π′ of the
restricted formula REFs(φ)↾ρ in low block-width. We can now
show how to analyze this refutation, inspired by the block-width
lower bound, and succeed in finding a satisfying assignment
whenever one exists.

We first state the following simple but crucial technical fact
used in the proof.

Fact IV.4. Let φ be CNF formula over n variables. If C
is a non-tautological width-n clause over the variables of φ
that is not the weakening of any clause of φ, then the unique
assignment that falsifies C is a satisfying assignment for φ.

Now we can present the algorithm and prove its correctness.

Lemma IV.5 (Assignment extraction). There exists a deter-
ministic algorithm E such that for every s ∈ N, every π a
purported Resolution refutation of REFs(φ) for a CNF formula

φ(x1, . . . , xn) with m clauses, and every ρ ∈ {0, 1, ∗}N a d-
disabling restriction to the N variables in REFs(φ), it holds
that E(φ, ρ, s, π) terminates in time poly(|π|, s, n,m) and
provides exactly one of the following outputs:

(a) an incorrect derivation step in π;
(b) a clause C ∈ π↾ρ of block-width at least 1/3 · ⌊(s− d−

n)/n⌋;
(c) a satisfying assignment for φ.

Proof. We traverse the refutation π inspired by the Delayer’s
strategy in the Prover-Delayer game that yields a block-
width lower bound for the restricted REF formulas—and the
correctness of the algorithm is essentially the proof of this
block-width lower bound.

Before the traversal of π starts, we arrange the s − d
blocks enabled by ρ in a layered manner, so that there are n
layers, each containing ⌊(s−d)/n⌋ blocks (with the remainder
blocks left from the flooring operations collected all in the
last layer), plus one additional layer on top with a single
block corresponding to the root. We see the root as laying
at layer 0, and intuitively blocks in layer i will be obtained
by resolving over variable xi+1. Throughout the traversal, we
keep a record α ∈ {0, 1, ∗}N which we call the reservation, in
which we “reserve” information needed to continue the traversal.
(Intuitively, this record keeps the information that the Delayer
has in mind when playing against the Prover.) A reservation
is a partial assignment to the variables of REFs(φ), and hence
encodes patches of a potential refutation. In particular, it will
encode information about how blocks are connected: say, some
block B will be derived from block B′, meaning that the
reservation encodes that the left pointer of B′ is B, etc. Hence,
when talking about a reservation, we will often say that a certain
block has information about their parents or information about
their children, to mean that such a connection is registered in
the reservation.

The algorithm proceeds as follows. First, let π := π↾ρ,
initialize α := ρ, and collect in a set D ⊆ [s] the d blocks
that are disabled by the restriction ρ. Note that ρ is a d-
disabling restriction, meaning that it only enables and disables
blocks, and sets the value of all the variables in disabled blocks,
meaning that the restriction cannot possibly falsify any axiom
of REFs(φ). Note as well that in π, after hitting it with ρ,
there are no longer resolution steps over enabling variables nor
over variables belonging to a disabled block.

In what follows, capitals letters in roman font, like A, refer to
clauses in the refutation π, while capital letters in calligraphic
font, like A, refer to clauses encoded in the blocks of REFs(φ)
which are determined by assignments to the variables of
REFs(φ).

Algorithm IV.2: Block-width analysis and assign-
ment extraction

Let C be the root of π and traverse the proof dag
following these instructions.

1) If C is obtained by an illegal derivation step, halt
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and output C; if C is a leaf of π, halt and output
failure. Otherwise, continue to Step 2.

2) If C was obtained from weakening a clause
C ′ ⊆ C, then set C := C ′ and move to Step 4.

3) If C was derived from clauses A∨v and B ∨ ¬v by
resolving over v, attempt the following reservations
according to these rules (with the condition that
blocks mentioned in the set D can never be
reserved).

a) If v belongs to a block on layer 0 ≤ i < n,
where layer 0 stands for the root block, we have
two cases:
i) if α has no information about this block,

update α by reserving two unreserved blocks
on layer i+1 so that the block of v encodes
the clause

∨i
j=1 xj and it was obtained by

resolving the clauses xi+1 ∨
∨i

j=1 xj and
¬xi+1 ∨

∨i
j=1 xj , to be encoded in the two

reserved blocks on layer i+ 1;
ii) if the block was reserved in α but it had no

children attached, then α already determined
the clause C that is to be encoded in this
block. Then, update α by reserving two
unreserved blocks on layer i + 1 and so
that that the block of v encodes the clause C
and it was obtained by resolving the clauses
xi+1 ∨ C and ¬xi+1 ∨ C, to be encoded in
the two reserved blocks on layer i+ 1.

iii) Otherwise, do nothing.
If this reservation fails because there are not
enough free blocks available, halt and output
the clause C.

b) If v belongs to a block on layer n, we distinguish
two cases:
i) if the block is not mentioned in α, then

try to find the first axiom in φ such that∨n
j=1 xj is a weakening of it, and reserve it

so it encodes A :=
∨n

j=1 xj and its pointers
point to this axiom;

ii) if the block was reserved in α but it was
not pointing to any axiom, then there is a
clause A associated to it by the reservation;
try to find the first clause in φ such that A
is a weakening of it and point to it in α.

iii) Otherwise, do nothing.
If this reservation fails because no axiom could
be found, then halt and output the assignment
to the variables x1, . . . , xn given by ¬A, the
negation of the clause encoded by A.

If the reservations succeeded, look at α(v), which
is now guaranteed to be defined. If α(v) = 1, then
move to C := B ∨ ¬v, and otherwise move to
C := A ∨ v.

4) Clean-up the reservations in α as follows: α should
only contain information about (i) blocks disabled

by ρ and (ii) blocks mentioned in C or possibly
the children of these according to α. Erase all
other information from α.

5) Go to Step 1.

Since the algorithm is only traversing a path inside the proof
dag of π, the running time of this procedure is never longer
than a polynomial in the size of π. As for the correctness of the
algorithm, we now show that this behaves exactly as claimed.
The central claim is that, at the beginning of each iteration,
when looking at clause C, the following invariant is satisfied.
Here, bw(α) stands for the number of blocks mentioned by
the variables assigned by α, and bw(C) is the block-width of
a clause C.

Claim (Invariant). The following hold at the beginning of each
iteration of the algorithm, when dealing with the clause C in
the traversal of π:

(i) the reservation α falsifies C;
(ii) a block B ̸∈ D is only reserved in α if it is either

mentioned in C or its parent according to α is mentioned
in C, and, in particular, bw(α)− d ≤ 3 bw(C);

(iii) if α encodes any information about a block B from layer
i, and B ̸∈ D, then α also determines that B contains
exactly i literals over the variables x1, . . . , xi and no two
literals for the same variable;

(iv) the reservation α does not falsify any axiom of REFs(φ).

Proof sketch. The invariant is readily verified at the initial
iteration, when C = ⊥ and α = ρ, the d-disabling restriction
given as input.

Now, by straightforward structural induction, it is easy to
see that assuming that the invariant holds at the beginning
of an iteration and the algorithm correctly proceeds to the
next iteration without halting, the invariant holds again at the
beginning of the new iteration.

Note that, if the algorithm reached a clause C that happened
to be a leaf of π, then by point (i) of the invariant α would
be falsifying C, which would mean falsifying an axiom of
REFs(φ), contradicting point (iv) of the very same invariant.
Thus, if π is a correct Resolution refutation, that means that
the algorithm always halts before reaching a leaf, and always
for one of the following two reasons.
(a) The algorithm attempted the reservation of a block at

level 1 ≤ i < n, but there were no free blocks left. This
means that α already reserved at least ⌊(s − d)/n⌋ − 1
blocks on that layer, and so bw(α) ≥ ⌊(s−d)/n⌋−1+d,
since each layer i < n contains exactly ⌊(s − d)/n⌋
blocks. By point (ii) of the invariant we have that that
bw(α)− d ≤ 3 bw(C), so putting this together we have
that when outputting C we are outputting a clause of
block-width at least 1/3⌊(s− d− n)/n⌋, as desired.

(b) The reservation α had a clause A encoded in a block at
layer n, but it failed to find an axiom of φ that A was
a weakening of. By point (iii) of the invariant, since the
block is at layer n, it encodes a width-n clause, and by
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Fact IV.4, ¬A encodes a satisfying assignment of φ. In
this case the algorithm outputs this assignment, which
satisfies the desired behavior.

This completes the proof of correctness of the algorithm.

C. Putting it together

The following is a formal restatement of Theorem I.1.

Theorem IV.6. It holds that FPAPRes[n
3] ∈ FP. That is, there

exists a deterministic polynomial-time algorithm solving the
search version of the Proof Analysis problem for Resolution
whenever the lower bound parameter satisfies s ≥ n3.

Proof. Let (φ(x1, . . . , xn), π, 1s) be an instance of the Proof
Analysis Problem with s ≥ n3. First, check whether π is
indeed a correct Resolution refutation of REFs(φ). If not, reject.
Otherwise, run the algorithm from Lemma IV.3 on π, which
outputs a d-disabling restriction ρ, with d ≤ (c/2)

√
s log |π |,

such that π↾ρ is a Resolution refutation of REFs(φ)↾ρ of block-
width at most c·

√
s log |π|, for some fixed constant c. Then run

the extraction algorithm from Lemma IV.5 on π and ρ. Since
π is a correct refutation, it must be the case that the extraction
algorithm from Lemma IV.5 outputs either a clause of π↾ρ of
block-width at least (s− d−n)/3n or a satisfying assignment
of φ. In the latter case, we are done. In the former case, it
holds that 1/3⌊(s− d−n)/n⌋ ≤ c ·

√
s log |π|, which implies

|π| > 2εs/n
2 ≥ 2ε·n for some small enough ε and sufficiently

large n. Since π is so large we can, in time polynomial in the
size of the input, go over all 2n assignments to the variables
of φ and output a satisfying assignment of φ if one exists, and
otherwise reject.

If we are interested in inputs where the lower bound is
quadratic instead of cubic, then we can still achieve polynomial
time at the cost of randomness.

Theorem IV.7. There exists a zero-error randomized
polynomial-time algorithm solving the search version of the
Proof Analysis problem for Resolution whenever the lower
bound parameter satisfies s ≥ n2. That is, FPAPRes[n

2] is in
FZPP.

Proof. We carry out the proof for a fixed constant success
probability p, but the argument works for any p < 1. The
algorithm is essentially the same as before, except we now use
the randomized width-reduction procedure in Lemma IV.2 at
the beginning, instead of the greedy deterministic one.

Observe that the randomized algorithm in Lemma IV.2 can
be used with zero-error, because once a restriction ρ is sampled,
we can check if it successfully reduces the block-width to the
desired bound, and run it again as many times as needed, which
puts us in FZPP.

As for why s can now be allowed to be n2, observe that
the randomized procedure achieves better width reduction, of
O(log |π|) whenever p is a constant. Combining this with the
(s− d− n)/3n bound of block-width given by Lemma IV.5,
which in this case becomes s/6n − 1/3 because d = s/2,

we now have |π| > 2Ω(s/n), meaning that s ≥ n2 suffices to
obtain an exponential lower bound.

As discussed in introduction, the deterministic algorithm in
Theorem IV.6 gives us a Levin reduction between 3SAT and the
Proof Size Problem for Resolution (PSPRes, see Section II-A3).
Here the search version of 3SAT if the one that finds satisfying
assignments of satisfiable formulas, while the search version
of PSPRes consists in finding a Resolution refutation of the
right size.

Corollary IV.8. There is a polynomial-time Levin reduction
from the search problem for 3SAT to the Proof Size Problem
for Resolution.

Proof. In [13], a 3-CNF formula φ is mapped to the formula
REFn2(φ). If, instead, we map it to REFn3(φ), then this
is still a many-one reduction from 3SAT and hardness of
automatability still follows, but this is now a Levin reduction:
given a satisfying assignment for φ, we can always come
up with a short Resolution refutation of REFn3(φ) using the
standard upper bound; and given a Resolution refutation π
of REFn3(φ) of polynomial-size, we can extract a satisfying
assignment for φ using Theorem IV.6.

V. PAPEF IS NP-COMPLETE

In light of the extraction algorithm in Theorem IV.6, it
is natural to ask whether stronger proof systems are also
analyzable. As shown in Proposition III.6, the existence of a
polynomial-time proof analysis algorithm for a proof system S
implies that automating S is NP-hard. Could this be the route
towards proving that automating systems like Extended Frege
is NP-hard?

This turns out to be unlikely. While for Resolution
PAPRes[n

2] ∈ AC0 and FPAPRes[n
3] ∈ FP, already the

decision problem for Extended Frege PAPEF turns out to be
NP-complete. This extends to every proof system S that p-
simulates Extended Frege: it is NP-complete to decide whether
a formula φ is satisfiable given an S-proof of a Resolution lower
bound on φ. In the full version [59], we further build on this
NP-hardness result to investigate whether finding polynomial-
time analysis algorithms (for weaker systems where they exist)
requires proving proof complexity lower bounds first.

The idea of the hardness proof is to show that Extended
Frege can prove Resolution lower bounds for certain formulas
encoding instances of the VERTEX COVER problem. The lower
bound will be “agnostic” in the sense that it will not depend on
whether the underlying VERTEX COVER instance is satisfiable
or not. This means that an algorithm that distinguishes between
“true Resolution lower bounds” (those where the underlying
formula is unsatisfiable) from “trivial ones” (those proven for
satisfiable formulas) will be able to decide VERTEX COVER
and hence all of NP.

The formulas in question come from a convenient encoding
of VERTEX COVER in a way that embeds a pigeonhole
principle. We define these next.
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Definition V.1 (The VERTEX COVER formulas). Let G =
(V,E) be a graph on n nodes and let k be a positive integer
such that k ≤ n. The CNF formula VC(G, k) has variables

{v1, . . . , vn} ∪ {pi,j | i ∈ [n], j ∈ [k]},

and clauses

¬vi ∨
k∨

j=1

pi,j i ∈ [n] (VC-1)

vi ∨ vi′ (i, i′) ∈ E (VC-2)
¬pi,j ∨ ¬pi,j′ i ∈ [n], j, j′ ∈ [k], j ̸= j′ (VC-3)
¬vi ∨ ¬vi′ ∨ ¬pi,j ∨ ¬pi′,j j ∈ [k], i, i′ ∈ [n], i ̸= i′ (VC-4)

The formula VC(G, k) is satisfiable if and only if G has
a vertex cover of size at most k. The vertices in the cover
are given by an assignment to the variables v1, . . . , vn and, to
force that there are at most k vertices in the cover, the clauses
on the variables pi,j enforce an instance of the pigeonhole
principle with one pigeon for each vertex in the cover, and k
holes.

Due to the embedded pigeonhole principle these formulas
will be hard for Resolution. We show that such a Resolution
lower bound is provable already in S12. We need two main
ingredients for this. First, the graphs on which we will show
hardness will be the graphs obtained from the standard textbook
reduction from 3SAT to VERTEX COVER. Second, the proof
of the Resolution lower bound in Extended Frege will come
from a reduction to Haken’s lower bound for the pigeonhole
principle. The latter was already formalized by Cook and Pitassi
in PV1.

Theorem V.2 (Cook and Pitassi, 1990 [35]). There exist a
positive ε0 ∈ Q and n0 ∈ N such that

PV1 ⊢ ∀n∀π(RefRes(PHPn
n−1, π) ∧ n ≥ n0 → ||π|| > ε0n).

Regarding the construction of the graphs, we need to make
sure that S12 can prove the correctness of the standard reduction
from 3SAT to VERTEX COVER. The proof is the standard
textbook construction from 3SAT to CLIQUE and then to
VERTEX COVER (as in, for example, [77, §3.1.3]). We state it
below but defer the proof to the appendix of the full version
of the paper [59].

Lemma V.3 (3SAT ≤p VERTEX COVER in S12). There exists
a PV function f such that S12 proves the statement that for
every 3-CNF formula φ with n variables and m clauses, f(φ)
outputs a graph Gφ = (V,E) with m · n nodes such that the
formula φ is satisfiable if and only if Gφ has a vertex cover
of size m · (n− 1).

Now, under a suitably crafted restriction, the formula
VC(G, k) for the particular graph G = Gφ from Lemma V.3
will become PHPn+1

n , and S12 proves Haken’s lower bound, as
shown by Cook and Pitassi (Theorem V.2).

Theorem V.4. For every positive constant c ∈ N, there exist
n0 ∈ N such that, if for every 3-CNF formula φ we write

Gφ for the graph obtained in polynomial-time from φ by the
reduction f in Lemma V.3, then it holds that

S12 ⊢ ∀φ∀π∀n ≤ φ∀m ≤ φ(n ≥ n0 ∧ 3-CNF(φ, n,m)

∧ |π| ≤ nc → ¬RefRes(VC(Gφ,m(n− 1)), π)).

Proof. Suppose for contradiction that π is indeed a Resolution
refutation of VC(G,m(n − 1)). Consider the restriction ρ
mapping vi 7→ 1 for all i ∈ [mn]. By inspecting axioms (VC-1)
to (VC-4) we get that π↾ρ is now a Resolution refutation of
PHPmn

m(n−1).
Next, restrict further as follows. Consider the variable

substitution ρ′ extending ρ as follows: For every i ∈ [mn]
and j ∈ [m(n − 1)], let k, k′, r, r′ be integers such that i =
kn + r + 1 and j = k′(n − 1) + r′ + 1 with 0 ≤ r < n
and 0 ≤ r′ < n − 1, and set ρ′ : pi,j 7→ 0 if k ̸= k′, and
ρ′ : pi,j 7→ pr+1,r′+1 if k = k′. Let π′ := π↾ρ′ . It is now
immediate to see that π′ is a Resolution refutation of PHPn

n−1.
However, by Theorem V.2, ||π′|| > ε0n, implying ||π|| > ε0n.
This contradicts the assumption |π| ≤ nc, when n ≥ n0 and
n0 is chosen large enough.

Corollary V.5. For every positive constant c ∈ N, there exists
a polynomial-time computable function t such that for every
3-CNF formula φ over a large enough number n of variables
and m clauses, t(φ) outputs an Extended Frege proof π such
that

π : EF ⊢ ¬REFnc (VC(Gφ,m(n− 1))) .

Proof. The formula in Theorem V.4 is ∀Πb
1, so we can apply

Cook’s translation (Theorem II.2) to get polynomial-size EF
proofs of J¬RefRes(VC(Gφ,m(n− 1)), π)K. Extended Frege
can then uniformly prove that the REF-like formula obtained
from the translation is equisatisfiable to the REF formulas as
we have defined them in Definition II.3. We then have that EF
proves ¬REFnc (VC(Gφ,m(n− 1)), ) in polynomial size and
the proofs can be produced uniformly in polynomial time.

The previous upper bound in Extended Frege works for
every φ, regardless of its satisfiability. This is the key idea
behind the final reduction.

Theorem V.6. For every positive constant c ∈ N, the language
3SAT reduces to PAPEF[n

c] under polynomial-time many-one
reductions.

Proof. The reduction maps a 3-CNF formula φ over n variables
and m clauses to the instance (ψ, π, 1s), where ψ is the
VERTEX COVER formula ψ := VC(Gφ,m(n − 1)), together
with the Extended Frege proof π given by the map t(φ) in
Corollary V.5, and the size parameter 1s is 1n

c

.
By Corollary V.5, the proof π is always a correct EF-proof,

regardless of the satisfiability of φ. Now, if φ ∈ 3SAT, then
Gφ has a vertex cover of size m(n − 1) and hence ψ is
satisfiable, so (ψ, π, 1n

c

) ∈ PAPEF. On the other hand, if
φ ̸∈ 3SAT, then Gφ does not have a vertex cover of size
m(n−1), so ψ is unsatisfiable. Since π is still a valid EF-proof,
we get (ψ, π, 1n

c

) ̸∈ PAPEF. This proves that the reduction is
correct.
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This yields the following formal restatement of Theorem I.3.

Corollary V.7. For every propositional proof system Q that
p-simulates Extended Frege and every polynomial s(n), the
problem PAPQ[s(n)] is NP-complete under polynomial-time
many-one Levin reductions.

Proof. Membership in NP is trivial, since PAPQ ∈ NP for
every Cook-Reckhow system Q. Hardness for PAPEF[s(n)]
is given by Theorem V.6, and since Q p-simulates EF, this
means that an instance (ψ, π, 1t) of PAPEF with t ≥ s(n) can
be turned into an instance (ψ, π′, 1t), where π′ is the Q-proof
obtained by simulating π.
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Comput. Sci. Appl. Logic. Birkhäuser Boston, Boston, MA, 1995,
vol. 13, pp. 344–386.

[28] R. Alweiss, S. Lovett, K. Wu, and J. Zhang, “Improved bounds for the
sunflower lemma,” Annals of Mathematics, vol. 194, no. 3, pp. 795–815,
2021.

[29] J. Park and H. T. Pham, “A proof of the Kahn–Kalai conjecture,” J. Amer.
Math. Soc., vol. 37, pp. 235–243, 2024.

[30] A. Atserias and I. Tzameret, “Feasibly constructive proof of Schwartz-
Zippel lemma and the complexity of finding hitting sets,” Electronic
Colloquium on Computational Complexity (ECCC), no. TR24-174, 2024.
[Online]. Available: https://eccc.weizmann.ac.il/report/2024/174/

[31] J. Pich and R. Santhanam, “Learning algorithms versus automatability
of Frege systems,” in 49th International Colloquium on Automata,
Languages, and Programming (ICALP 2022), vol. 229, 2022, pp. 101:1–
101:20.

[32] K. Iwama, “Complexity of finding short resolution proofs,” in Mathe-
matical foundations of computer science 1997 (Bratislava), ser. Lecture
Notes in Comput. Sci. Springer, Berlin, 1997, vol. 1295, pp. 309–318.
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[34] J. Håstad and K. Risse, “On bounded depth proofs for Tseitin formulas on
the grid; revisited,” in 2022 IEEE 63rd Annual Symposium on Foundations
of Computer Science (FOCS). IEEE, 2022, pp. 1138–1149.

[35] S. Cook and T. Pitassi, “A feasibly constructive lower bound for resolution
proofs,” Information Processing Letters, vol. 34, no. 2, pp. 81–85, 1990.

[36] M. Clegg, J. Edmonds, and R. Impagliazzo, “Using the Groebner
basis algorithm to find proofs of unsatisfiability,” in Proceedings of
the Twenty-eighth Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996). ACM, New York, 1996, pp. 174–183.

[37] E. Ben-Sasson and A. Wigderson, “Short proofs are narrow—resolution
made simple,” J. ACM, vol. 48, no. 2, pp. 149–169, 2001.

[38] A. Atserias and V. Dalmau, “A combinatorial characterization of
resolution width,” J. Comput. System Sci., vol. 74, no. 3, pp. 323–334,
2008.

[39] A. A. Razborov, “Resolution lower bounds for perfect matching princi-
ples,” J. Comput. System Sci., vol. 69, no. 1, pp. 3–27, 2004.

[40] N. Thapen, “A tradeoff between length and width in resolution,” Theory
Comput., vol. 12, pp. Paper No. 5, 14, 2016.

[41] M. Garlı́k, “Resolution lower bounds for refutation statements,” in 44th
International Symposium on Mathematical Foundations of Computer
Science, 2019, pp. Art. No. 37, 13.

[42] I. C. Oliveira, “Meta-mathematics of computational complexity theory,”
Electronic Colloquium on Computational Complexity (ECCC), no.
TR25-041, 2025. [Online]. Available: https://eccc.weizmann.ac.il/report/
2025/041/

[43] A. Gaysin, “H-coloring dichotomy in proof complexity,” Journal of Logic
and Computation, vol. 31, no. 5, pp. 1206–1225, 04 2021.

[44] M. Müller, “Typical forcings, NP search problems and an extension of
a theorem of Riis,” Annals of Pure and Applied Logic, vol. 172, no. 4,
p. 102930, 2021.

[45] E. Khaniki, “New relations and separations of conjectures about
incompleteness in the finite domain,” Journal of Symbolic Logic, vol. 87,
no. 3, pp. 912–937, 2022.

[46] ——, “Nisan-Wigderson Generators in Proof Complexity: New Lower
Bounds,” in 37th Computational Complexity Conference (CCC 2022),
ser. Leibniz International Proceedings in Informatics (LIPIcs), vol. 234,
2022, pp. 17:1–17:15.

[47] M. Narusevych, “Models of bounded arithmetic and variants of
pigeonhole principle,” 2022. [Online]. Available: https://arxiv.org/abs/
2208.14713

[48] J. Pich and R. Santhanam, “Towards P ̸= NP from Extended Frege
lower bounds,” 2023. [Online]. Available: https://arxiv.org/abs/2312.
08163
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