
A Formal Language for QBF Family Definitions

Noel Arteche Echeverŕıa1,2 and Matthias van der Hallen2

1 University of the Basque Country, Faculty of Computer Science
Manuel Lardizabal 1, 20018 Donostia / San Sebastián, Spain

narteche002@ikasle.ehu.eus
2 KU Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium
noel.artecheecheverria@student.kuleuven.be

matthias.vanderhallen@kuleuven.be

Abstract. In this work we propose a formal language to write defini-
tions of classes of Quantified Boolean Formulae (QBF) in terms of —po-
tentially— any type of parameters. A class of formulae provides an encod-
ing in logic terms of some computational problem, and these definitions
of families of formulae usually depend on some parameters determining
the size, structure, alternation patterns of quantifiers and complexity of
the described formulae. These parameters and their relation to the struc-
ture of formulae can be easily encoded in this language. Additionally, we
present QBDef, a computer tool capable of parsing these definitions and
outputting the formulae in either the QCIR or QDIMACS formats to
be fed to a QBF solver. This aims to be both a framework and a tool
for future empirical research in these topics.

Keywords: QBF · Formal language · Proof complexity · PSPACE ·
QCIR · QDIMACS

1 Introduction

Many QBF solvers can be considered to perform a heuristic search for a proof in
some proof system. Consequently, studying the proof complexity of these systems
provides insights into their strengths and weaknesses. The theoretical research
often proceeds by defining classes of formulae or formula families to then show
proof-theoretic lower bounds on them. In practice, the definition of a formula
family declares the structure of the formulae contained in that set. One can think
of a formula family definition as the encoding of a PSPACE problem into QBF.
Problems outside PSPACE might be encoded in QBF too, but (probably) not in
polynomial time.

To check whether the theoretical results on proof systems apply to the QBF
solvers built on top, a tool to ease the generation of instances from formula fami-
lies has been missing. In this extended abstract, we present the work in progress
for a formal language to define formula families and QBDef, a computer tool
capable of reading them and, instantiating concrete parameter values, output a
file that can be fed to a QBF solver.



2 N. Arteche et al.

Although most of the existing formula families in the literature depend on a
single scalar value, the language presented in this paper supports virtually any
data structure for parameter types via the use of embedded Python, e.g. graphs.

Naturally, any programming language could be used for this same purpose, by
means of a script that generated instances of specific formula families. However,
these family-specific scripts work directly with the formulae written in the final
formats. Although this is acceptable if we are interested only in a particular
family, the tool presented in this work (QBDef) lets users focus on the formulae,
without having to worry about lower-level details and formats, and encourages
to playfully come up with inventive hard-to-prove formulae while, at the same,
brings QBF modelling tools closer to the non-QBF-expert.

2 Formula Families

In this context, a formula family or class of formulae is a set of QBF all present-
ing the same structure and meaning. In particular, we are interested in dealing
with a formula family’s definition.

The formula families used in the proof complexity literature are usually rather
artificial. Such a case is that of the QParity formulae, first introduced in [2] and
later used in [1] to show an exponential separation between proof systems. These
formulae have a single parameter n ∈ N. We present the more succinct version of
circuits for this family, as an example of what a formula family definition looks
like.

Definition 1 (QParity circuits [1]). Let n ∈ N, n ≥ 2, and let x1, . . . , xn
and z be Boolean variables. We define the quantifier prefix Pn = ∃x1 . . . ∃xn∀z.
We define an auxiliary circuit t2 as t2 = x1⊕x2 and for i ∈ {3, . . . , n} we define
auxiliary t-circuits as ti = ti−1⊕xi and the complete matrix as ρn = tn⊕z. The
QBF instance will be QParityn = Pn : ρn.

3 The Formal Language

We now give a formalism in which to write these definitions. This formal language
relies on the basic concept of blocks. A block is a sequence of bricks, which are
literals (input variables that may be negated) or references to other blocks (also
possibly negated). A block can then be assigned a single attribute, i.e. a quantifier
or a logical operator (conjunction, disjunction or exclusive disjunction).

Example 1 (Basic use of blocks). The formula ϕ(x, y, z) = (x ∨ y) ∧ z can be
defined in our language using two blocks:

define block B1 := x, y; define block B2 := B1, z;

Blocks only declare ordering of bricks. Meaning is later given through an
attribute (e.g. the and and or operators). These operate between them all the
bricks in the block.



A Formal Language for QBF Family Definitions 3

block B1 operated with OR; block B2 operated with AND;

The structure of blocks captures simultaneously both the idea of gates on
a Boolean circuit as well as the intricate nested patters of quantifier prefixes.
Imagine that the previous formula is quantified as follows:

∀x∃y∃z : ϕ(x, y, z)

We can define some blocks to obtain the structure of the quantifier prefix:

define block Q1 := x;

define block Q2 := y, z;

define block Q := Q1, Q2;

block Q1 quantified with A;

block Q2 quantified with E;

Finally, we can combine the quantifier prefix block Q with the block B2 rep-
resenting ϕ and indicate that this is our output block.

define block Phi := Q, B2; output block: Phi;

To showcase the language in a more realistic scenario, we present the formal
version of the QParity formulae from the previous section.

Example 2 (Formal version of the QParity formulae). Firstly, we declare pa-
rameters, followed by their type as well as possible constraints (in this case,
n ≥ 2). We then declare the variables. Variables xi are denoted x(i) and the
range of indices must be specified.

parameters: {

n : int, ‘n >= 2‘;

}

variables: {

x(i) where i in 1..n;

z;

}

We now declare the blocks. We have blocks for quantifiers and blocks for
gates, but they use the same space and syntax (this allows to define non-prenex
circuits). When quantifying a block, the block is expanded, assigning the quan-
tifier to variables in a depth-first manner.

define blocks {

X := x(i);

} where i in 1..n;

define block Z := z;

define block Q := X, Z;

block X quantified with E;

block Z quantified with A;

In the same section, we define the blocks used to build the matrix of the
formula. An important feature is that of groupings: a set of blocks grouped under
the same name, so that they can all be simultaneously operated or quantified.



4 N. Arteche et al.

define blocks grouped in T {

T(2) := x(1), x(2);

T(i) := T(s), x(i);

} where i in 3..n, s = ‘i-1‘;

define block Ro := T(n), z;

all blocks in T operated with XOR;

block Ro operated with XOR;

define block Phi := Q, F;

For an extra, less artificial example, the Appendix contains the case study of
the Chromatic Formulae, a QBF encoding of the Chromatic Number Problem
where the use of a graph as a parameter of the definition is showcased.

4 The Tool

Based on the language described above, QBDef, a computer tool to parse defini-
tions and output files to be fed to a QBF solver has been developed in Python.

If the input definition declares a PCNF formula, the tool can print either
a QDIMACS or a QCIR file. If the input is a circuit, it can natively output
a QCIR file or convert it to CNF and output a QDIMACS file using William
Klieber’s conversion tool developed in the context of the GhostQ QBF solver3.
If the formulae are non-prenex, they can be printed in the specific QCIR format
for non-prenex formulae.

Complex arithmetic expressions must be written in Python syntax and en-
closed in backticks. This is because they are interpreted and evaluated by Python
itself. Embedded Python gives our language an immense expressive power, as
virtually any condition or structured object can be written in the definitions
using built-in Python data types and functions.

5 Ongoing Work

Currently only a prototype of QBDef exists and requires polishing and extensive
testing4.

Additionally, ongoing work includes the study of other families that could
exploit the features of this language, such as encodings of PSPACE games.

As a long term goal, this work could lead to future empirical research in the
performance of QBF solvers by easily translating both existing and new formula
families into the language presented here.

Acknowledgements

Thanks to Marc Denecker and Montserrat Hermo for co-promoting the Master’s
thesis to which this work belongs. Thanks to Florian Lonsing for his useful
comments and insights.

3 https://www.wklieber.com/ghostq/qcir-converter.html
4 The current prototype is available at https://github.com/alephnoell/QBDef. The

final version of the tool and its source code will be made available in coming months
through this same channel.

https://www.wklieber.com/ghostq/qcir-converter.html
https://github.com/alephnoell/QBDef


A Formal Language for QBF Family Definitions 5

References

1. Beyersdorf, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In:
Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)

2. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based
QBF calculi. In: LIPI Symposium on Theoretical Aspects of Computer Science
(STACS’15). vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz International Proceedings
in Informatics (2015)

3. Sabharwal, A., Ansotegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling:
Exploiting player symmetry for simplicity and efficiency. In: International Confer-
ence on Theory and Applications of Satisfiability Testing. pp. 382–395. Springer
(2006)

Appendix

Example 3 (Definition and formal version of the Chromatic Number Problem).
The Chromatic Number Problem is a well-known DP-complete problem: given
a graph G and a natural number k ≥ 1, decide whether k is the chromatic
number of G, i.e. the minimum k such that G is k-colorable. Although this is an
NP-complete problem and, as such, can be encoded into a SAT formula, a more
natural encoding is also possible using quantification: there exists a coloring of
G with k colours and for all other coloring of size k − 1, these are not valid
colorings for G.

We need to define a formula family for the problem, depending on two pa-
rameters: the graph G and the number k. The following definition or encoding
for this problem was given by Sabharwal, et al. in [?].

In what follows we denote by n the number of nodes in the graph G = (V,E).
We define variables xi,j for i ∈ [n] and j ∈ [k] and yi,j for i ∈ [n] and j ∈ [k− 1].
Semantically, any of these variables is set to 1 if and only if node i is set to have
colour j.

We now define a subformula Γ that is true whenever the x-variables form a
legal k-coloring,

Γ =
∧
i∈[n]

(xi,1 ∨ . . . ∨ xi,k) ∧
∧
i∈[n]

j 6=j′∈[k]

(¬xi,j ∨ ¬xi,j′) ∧
∧

(i,i′)∈E
j∈[k]

(¬xi,j ∨ ¬xi′,j)

and another subformula, ∆, which is true only when the y-variables do not
form a legal (k − 1)-coloring

∆ =
∨
i∈[n]

(¬yi,1 ∧ . . . ∧ ¬yi,k−1) ∨
∨
i∈[n]

j 6=j′∈[k−1]

(yi,j ∧ yi,j′) ∨
∨

(i,i′)∈E
j∈[k−1]

(yi,j ∧ yi′,j)

Clearly, k will be the chromatic number of G if there exists an assignment for
the x-variables that makes Γ true and for any assignment to the y-variables, ∆



6 N. Arteche et al.

is true. This gives us the full encoding of the Chromatic Number Problem into
a QBF, that we call the Chromatic Formula, K(G, k):

K(G, k) = ∃x1,1 . . . x1,k . . . xn,1 . . . xn,k∀y1,1 . . . y1,k−1 . . . yn,1 . . . yn,k−1 : Γ ∧∆

We can now give the formal version of this definition in the syntax of our
language. The main new feature showcased by this example is that we need to
check whether a certain edge (i, j) is in the graph, (i, j) ∈? E. For this purpose,
we encode the graph as and adjacency matrix, edges, and then the condition
can be written as ‘edges[i-1][j-1] == 1‘ (using Python syntax). The full
code is given below.

Formal version of the Chromatic Formulae

name: Chromatic formulae;

format: circuit-prenex;

parameters: {

n : int, ‘n >= 1‘;

edges : list;

k : int, ‘k >= 1‘;

}

variables: {

x(i, j) where i in 1..n, j in 1..k;

y(i, j) where i in 1..n, j in 1..‘k-1‘;

}

blocks: {

/* === blocks for quantifers === */

define blocks grouped in X {

X(i) := x(i, j);

} where i in 1..n, j in 1..k;

define blocks grouped in Y {

Y(i) := y(i, j);

} where i in 1..n, j in 1..‘k-1‘;

define block Q := all blocks in X, all blocks in Y;

all blocks in X quantified with E;

all blocks in Y quantified with A;



A Formal Language for QBF Family Definitions 7

/* ==== blocks for matrix ==== */

define blocks grouped in AllColored {

Colored(i) := x(i, j);

} where i in 1..n, j in 1..k;

define blocks grouped in NotColored {

NotColored(i) := -y(i, j);

} where i in 1..n, j in 1..‘k-1‘;

define block Gamma1 := all blocks in AllColored;

define block Delta1 := all blocks in NotColored;

define blocks grouped in SubGamma2 {

SG2(i, j, l) := -x(i, j), -x(i, l);

} where i in 1..n, j in 1..k, l in 1..k, ‘j != l‘;

define blocks grouped in SubDelta2 {

SD2(i, j, l) := y(i, j), y(i, l);

} where i in 1..n, j in 1..‘k-1‘, l in 1..‘k-1‘, ‘j != l‘;

define block Gamma2 := all blocks in SubGamma2;

define block Delta2 := all blocks in SubDelta2;

define blocks grouped in SubGamma3 {

SG3(i, j, l) := -x(i, l), -x(j, l);

} where i in 1..n, j in 1..n, ‘edges[i-1][j-1] == 1‘, l in 1..k;

define blocks grouped in SubDelta3 {

SD3(i, j, l) := y(i, l), y(j, l);

} where i in 1..n, j in 1..n, ‘edges[i-1][j-1] == 1‘, l in 1..‘k-1‘;

define block Gamma3 := all blocks in SubGamma3;

define block Delta3 := all blocks in SubDelta3;

define block Gamma := Gamma1, Gamma2, Gamma3;

define block Delta := Delta1, Delta2, Delta3;

define block F := Gamma, Delta;

all blocks in AllColored operated with OR;



8 N. Arteche et al.

all blocks in NotColored operated with AND;

all blocks in SubGamma2 operated with OR;

all blocks in SubDelta2 operated with AND;

all blocks in SubGamma3 operated with OR;

all blocks in SubDelta3 operated with AND;

blocks Gamma1, Gamma2, Gamma3 operated with AND;

block Gamma operated with AND;

blocks Delta1, Delta2, Delta3 operated with OR;

block Delta operated with OR;

block F operated with AND;

/* define the output block */

define block Phi := Q, F;

}

output block: Phi;


	A Formal Language for QBF Family Definitions

