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Abstract

We prove the first hardness results against efficient proof search by quantum algorithms. We show that under standard lattice-based cryptographic assumptions, no quantum algorithm can weakly automate TC0-Frege.
This extends the line of results of Krajíček and Pudlák (Information and Computation, 1998), Bonet, Pitassi and Raz (FOCS, 1997), and Bonet, Domingo, Gavalda, Maciel and Pitassi (Computational Complexity, 2004), who

showed that Extended Frege, TC0-Frege and AC0-Frege, respectively, cannot be weakly automated by classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are secure. To the
best of our knowledge, this is the first interaction between quantum computation and propositional proof search.

Automatability ∼ (Efficient) Proof Search

HowHard is to Find Proofs?

CNF Formula F → Deterministic Algorithm A︸ ︷︷ ︸
time?

→ Proof P :
{
satisfying assignment , if F ∈ SAT
refutation, if F ∈ UNSAT

Running time at least |F| + |P|;
Focus on UNSAT
if F has refutation of poly-size, ∃ algorithm that finds a refutation in poly-time?
Or anything better than trivial 2n?

Problem is in NP, so any ”impossibility” results are at least under P 6= NP.

(Frege) Proof Systems

Proof system S is a proof-verification algorithm, such that:

(F , P) → Verification by S︸ ︷︷ ︸
poly-time

→ (F , P) accepted ⇐⇒ P is a proof of F

F has a S-proof ⇐⇒ F ∈ Taut.

Frege system, Fr(K, R), is a proof system, where:

K: finite functionally complete set of Boolean connectives;

R: finite set of rules of the form:
B1, . . . , Bn

B

where B1, . . . , Bn, B are formulas built on a set of variables using K−connectives.

Frege proofs are sequences of formulas derived sequentially by using R−rules.
TC0−Frege is the subsystem of Frege where each rule can be ”computed” by TC0 circuits.

HowHard is to Find Proofs in Proof System S?

Proof system S is automatable in time f (N) if ∃ algorithm:

UNSAT CNF Formula F → Deterministic Algorithm A︸ ︷︷ ︸
time f (s)

→ Refutation in Proof System S

where s is the size of the smallest refutation of F in proof system S .

Best running time we can hope for |F| + s;

Here we are asking for time poly(|F| + s).

S, S ′: proof systems.

S ′ simulates (in time t) S ⇐⇒
{

S ′ and S verify the same formulas
S − proofs can be converted in S ′ − proof (in time t)

Proof system S is weakly automatable if ∃ proof system S ′ (simulating S) which is automatable.

The State of the Play

Figure 1. Overview of existing non-automatability results in classical framework.

Automatability of Strong Proof Systems

A, B : formulas. S has feasible interpolation property if short S−refutation ofA(x, z)∧B(y, z) → small

circuit that given z outputs if A or B is unsat.

Impagliazzo’s Observation. Weak automatability→ feasible interpolation.

Theorem 1. (Krajíček and Pudlák 1998) Frege is weakly automatable → RSA cryptosystem can be

broken by poly-size (classical) circuits.

Theorem 2. (Bonet, Pitassi, and Raz 1997) TC0−Frege is weakly automatable → Diffie-Hellman key

exchange protocol can be broken by poly-size (classical) circuits. Idea of the Proofs

Given ”hard to invert injective function f ” write a formula encoding (f (x0) = z) ∧ (f (x1) = z);
Since f is injective, this is an unsat formula;

(TC0)-Frege has a short refutation of (f (x0) = z) ∧ (f (x1) = z), then:
(TC0)-Frege has feasible interpolation → f is not hard to invert.

Our Contribution

Our Research Questions

Which is the natural way of defining automatability in quantum setting?

RSA is broken by quantum algorithms, can we prove non-quantum automatability under

post-quantum cryptographic question?

Our Results

Quantum Automatability.

UNSAT CNF Formula F → Quantum Algorithm A︸ ︷︷ ︸
q-time f (N)

→ Refutation in Proof System S

Lemma. Quantum weak automatability→ feasible interpolation by quantum circuits?

Main Theorem. If there exists a quantum algorithm that weakly automates TC0-Frege, then the
Learning with Errors (LWE) problem can be solved by poly-size quantum circuits.

Outline of the Proof

We show that: Feasible Interpolation→ Inverse of a (candidate) One-Way Function F efficiently!

Assuming the One-Wayness of F , TC0−Frege cannot have feasible interpolation, and by Impagliazzo’s
observation, we deduce that it is not automatable. There are only two important steps:

1. Designing a suitable F and an unsatisfiable split formula ϕF ;

2. Proving inside TC0-Frege that ϕF is unsatisfiable .

Candidate One-Way Function and Split Formula

For every matrix A ∈ Zm×n
q , we define the function:

FA : Zn
q × {ε ∈ Zm

q : |ε| ≤ C
√

mn} → Zm
q , FA(s, ε) = (As + ε) mod q .

Inverting FA → Inverting LWE (conjectured to be hard on average!)

Informally, our split formula is the following:

ϕF = (FA(x) = z ∧ x(1) = 0) ∧ (FA(y) = z ∧ y(1) = 1)
Note that ifFA is injective, then ϕF is indeed a contradiction, and almost allFAs, whereA ∼ U(Zm×n

q ),
are injective. We focus on these ones.

Unsatisfiability of the Split Formula in TC0

We define an object Cert(FA), such that:

Cert(FA) → FA injective;

FAinjective → Cert(FA) exists with high probability;
TC0-Frege can ”use” Cert(FA) to prove FAinjective.

Cert(FA) is a pair (A−1
L

, W ) such that (i) A−1
L
is the left-inverse of A, and (ii) W = {w1, . . . , wn} ⊆ L∗

linearly independent vectors:

max
i∈[n]

||wi|| < 1/2C
√

nm

.

Cert(FA) → FA injective:
1. A−1

L → Full-rank;

2. A(x − y) ∈ L ≥ λ1(L) since A(x − y) ∈ L;
3. λ1(L) > 2C

√
nm by hypothesis + Transference Theorem;

4. ε − ε′ ≤ 2C
√

nm by hypothesis;

5. 3 + 4 → Contradiction!

FAinjective → Cert(FA) exists with high probability:
1. Counting arguments;
2. Markov inequality.

Because of its non-determinism, TC0-Frege can guess Cert(FA)!
We only need to show that TC0-Frege:

can verify the correctness of Cert(FA);
can prove that Cert(FA) → FA.

For this purpose, we use an extension of the formal theory of linear algebra LA .
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