
A Formal Language and Tool for QBF
Family Definitions

Noel Arteche Echeverría

Thesis submitted for the degree of
Master of Science in Engineering:

Computer Science

Thesis supervisors:
Prof. dr. M. Denecker

Prof. dr. ir. G. Janssens
Prof. dr. M. Hermo

Assessors:
Matthias van der Hallen

Dr. J.T. Mühlberg

Mentor:
Matthias van der Hallen

Academic year 2019 – 2020

c© Copyright KU Leuven

Without written permission of the thesis supervisors and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisors is also required to use the meth-
ods, products, schematics and programmes described in this work for industrial or
commercial use, and for submitting this publication in scientific contests.

Preface

I would like to thank Marc Denecker for accepting to promote this thesis well before
meeting me in person.

To Matthias van der Hallen, for his wise direction, constant supervision, comments
and valuable insights during this time.

To my co-promoter back in Spain, Montserrat Hermo, for introducing me to
complexity theory and welcoming me to work on it with her.

Finally, my sincere gratitude goes to Zoë for guiding me in Leuven and without
whom the frustration would have been a lot more difficult to overcome.

Noel Arteche Echeverría

i

Contents

Preface i
Abstract iii
1 Introduction 1

Outline of the thesis . 3
Conceptual and notational preliminaries 3

2 Formula Families 9
2.1 Formula families: what they are — and what for 9
2.2 Formula families in the QBF domain 12
2.3 Formula family definitions: a tour d’horizon 14

3 The Formal Language 23
3.1 Some notes on desired features . 23
3.2 The block structure . 24
3.3 Writing definitions in the language 28
3.4 Expressive power and potential use cases 31

4 A Case Study: Encoding Geography in QBF 33
4.1 The Geography game . 33
4.2 Generalized Geography . 35
4.3 The Geography Formulae . 37

5 The Tool: Defining and Building Formulae with QBDef 43
5.1 A brief introduction to QBDef . 43
5.2 Representing and building the formulae 44
5.3 Evaluation of QBDef . 51
5.4 QBDef in action: testing the Chen Type 2 formulae 53

6 Conclusion 57
Summary of the main results . 57
Final remarks and future work . 58

A Formal grammar 63
B Encodings of the formula families 67
C Source code, installation and use of QBDef 87
D Paper 89
Bibliography 99

ii

Abstract

After the generalized success of SAT solvers in recent times, interest has grown in QBF
solvers, programs capable of solving the True Quantified Boolean Formula (TQBF)
problem, a PSPACE-complete problem with practical applications in solving what
lies beyond NP.

The research on QBF solvers is tightly related to proof complexity, where the
length of proofs in different proof systems capable of dealing with QBF is studied.
In the proof complexity literature, parameterized sets of formulae or formula families
are used to show exponential lower bounds, separations and other proof-theoretical
results on proof systems. Often, these formulae are used as benchmarks on QBF
solvers to test whether the solvers built on top of the proof systems find the same
difficulties proven in theory. Besides, given the growing variety of solving techniques
for QBF, testing hard-to-solve formulae on different solvers is an interesting approach
to empirical proof complexity research.

In this work, we propose a formal language to write definitions of classes of Quan-
tified Boolean Formulae (QBF) in terms of —potentially— any type of parameters. A
class of formulae provides an encoding in logic terms of some computational problem
—often one belonging to PSPACE. These definitions of families of formulae usually
depend on some parameters determining the size, structure, alternation patterns
of quantifiers and complexity of the described formulae. These parameters and
their relation to the structure of formulae can be easily encoded in this language.
Additionally, we present QBDef, a computer tool capable of parsing these definitions
and outputting the formulae in either the QCIR or QDIMACS formats to serve
as input to a QBF solver. This aims to be both a framework and a tool for future
empirical research on these topics.

iii

Chapter 1

Introduction

Proof complexity is the field of mathematics and computer science studying the length
of proofs in different proof systems. In the same way that computational complexity
theory stems from computability theory, aiming at studying the tractability of
computable problems, proof complexity goes beyond proof theory, focusing not on
determining what can be proven, but on showing whether proofs are intractably long.

For a long time, complexity theory has focused on SAT, the satisfiability problem
for Boolean formulae, while proof complexity has been working around the comple-
mentary problem, UNSAT, trying to give short proofs of universal statements like
unsatisfiability. Surprisingly, today the SAT problem is somewhat under control.
Despite the strong belief in the P 6= NP conjecture, state-of-the-art tools known
as SAT solvers employ very smart rules, heuristics and algorithmic techniques to
check satisfiability very fast for most real-world instances. As a result, for some time
now researchers have started looking beyond SAT and the domain of NP problems
to focus on a bigger complexity class: PSPACE, and its canonical problem, an
extension of SAT known as TQBF: the True Quantified Boolean Formula problem.

In the TQBF problem, we no longer look for a satisfying assignment for a Boolean
formula ϕ. Now we want to check that a Boolean formula is satisfied for every
variable configuration determined by some quantifiers. We are not only interested
in knowing, say, if there exist some x, y, z ∈ {0, 1} such that some ϕ(x, y, z) is true,
but whether, for instance, there exists some x such that for all y and for all z, the
formula ϕ is satisfied. These are called Quantified Boolean Formulae (QBF).

This problem is significantly more complex than SAT and has forced the current
research to go beyond the techniques and proof systems known so far. This quest for
new proof systems and efficient QBF solvers is now in full expansion: new tools are
in development and an active community is investigating their strengths, weaknesses
and performance. In parallel, the theoretical research proceeds in the field of proof
complexity by proving exponential lower bounds for the existing proof systems:
showing that even in this domain too, there are limits and hurdles.

In this area of proof complexity, researchers often work using sets of parameterized
QBF, often called formula families. In essence, researchers prove that a certain
formula family is difficult for a given proof system: as the size of the parameters

1

1. Introduction

increase, the length of proofs in a certain proof system grows super-polynomially.
And, on the practical side of things, researchers verify how fast these formulae are
solved by QBF solvers, or whether whenever short proofs exist, solvers can find them
quickly (a problem known as automatizability).

The formula families existent in the literature are many and varied, and it is
often the case that we want to generate instances of them to serve as inputs to QBF
solvers. This might be either to create benchmark problems, to guide particular
research of a specific family or, more generally, to find difficult formulae for a given
solver. Until now, the main approach to this problem was to write a script in some
programming language, capable of printing files containing the specific formulae for
the values of the parameters. This approach is feasible if the definition is fixed and
well-known, if we are only interested in that single family and we do not plan to make
modifications on it or if the translation from the natural-language mathematical
definition to a valid format (like QCIR or QDIMACS) is straightforward. But, as
soon as things begin to complicate, more general computer tools are needed for this
purpose.

Scripts like that work directly with input/output writing statements and strings
written in the formats accepted by solvers, which makes them too purpose-specific,
very unreadable and non-reusable. Besides, given the current lack of conversion tools
between formats, a script to output formulae in one format might be useless if we
want to test the same family on a different solver. We believe that research of the
QBF domain should be made easier, more convenient and flexible. Users should be
able to write formulae with multiple parameters, with varied data-types; they should
be able to generate random formulae; and playfully come up with new formulae in a
convenient editor that can build them easily, without worrying about format, input
and output files and other lower-level details holding them from easily playing with
the formulae on a higher reasoning level.

Inspired by this, some attempts at developing modelling tools for QBF already
exist. Most notably, Matthias van der Hallen’s SOGrounder (see [36]). However,
despite a certain overlap with the work we will be presenting here, SOGrounder
is designed for a somewhat different purpose, as it aims at conveniently modelling
problems in second-order logic to then perform tasks like grounding and model
checking on those theories. Despite the convenience provided by SOGrounder
for actual problem-solving, that tool cannot encode parameterized formula family
definitions. For instance, the game of chess can be encoded in QBF and then written
in SOGrounder, but a generalization of the game to an n×n board cannot, as this
would imply defining the structure of quantifier prefixes in terms of this parameter
n. Besides, while the goal of tools like SOGrounder is mainly modelling, QBDef is
aimed more specifically at proof complexity, where formula families do not necessarily
model intuitive but simply difficult to solve problems, whatever their nature, meaning
or applicability.

In this work, such a tool for the proof complexity domain is presented: QBDef.
It gets formula family definitions written in a formal language designed for this tool,
capable of expressing potentially any computable formula family, and given specific
values for the parameters outputs files in formats accepted by QBF solvers.

2

Outline of the thesis
This thesis tackles the problem of developing a tool for dealing with QBF families
by first looking at a wide variety of existing definitions to note on required language
features, then designing a formal language capable of expressing all the definitions
encountered and, finally, developing a computer tool that can parse this language
and output specific instances of the formulae for given values of the parameters.

Before going into the actual content, the next section introduces the notation
and terminology used across this work, defines concepts and revises some common
knowledge in complexity theory to serve as background to the reader.

In Chapter 2, the idea of formula families and their purpose is explored at length,
looking at what formula families look like and drawing on the existing literature to
present a brief yet representative selection of formula families to use as a reference
for the rest of the work.

In Chapter 3, we design a formal language to write such definitions. We present
its prominent features by means of examples and encode in it some of the formula
families defined in Chapter 2. A complete formal grammar of this language is given
in Appendix A.

In Chapter 4, we take a bit of a detour to dive into a case study of a specific
problem that can be represented as a formula family and encoded in the language:
the Generalized Geography game. We present the game and its generalized
version on a graph, provide a polynomial-time algorithm for the particular case of
directed acyclic graphs and describe how to model the game into QBF and then into
our language.

In Chapter 5, we finally present QBDef, the computer tool working with the
formal language described in Chapter 2. We present the tool and its features, discuss
some minor technical details of the implementation and look into how formulae are
built and encoded inside the system. Besides, we briefly discuss some sanity tests for
the tool and give a taste of how QBDef could be used in proof complexity research
by presenting an exponential separation given by the Chen Formulae of Type 2 as
generated by our tool.

Finally, Chapter 6 concludes this thesis and points at future lines of work that
would be interesting to follow.

Conceptual and notational preliminaries
We denote by N the set of natural numbers and we write N∗ for N \ {0}. For any
n ∈ N∗, [n] denotes the set {1, . . . , n} containing all positive natural numbers between
1 and n. Given a, b ∈ N, a ≤ b, [a, b]N denotes the closed interval [a, b] over the
natural numbers (i.e. [a, b]N = [a, b] ∩ N).

(Quantified) Boolean formulae

Boolean variables are variables that can take value either 0 or 1. A Boolean function
ϕ is a function that takes n Boolean inputs and produces one Boolean output, such

3

1. Introduction

that ϕ : {0, 1}n → {0, 1}. The inside of a Boolean function is often expressed as a
propositional formula. A propositional formula is formed by literals (possibly negated
Boolean variables) operated with negation (¬), conjunction (∧), disjunction (∨),
exclusive disjunction (⊕)1, implication (→) and double implication (↔). Whenever a
propositional formula ϕ is written as a conjunction of clauses, where these clauses are
all disjunctions of literals, we say ϕ is written in Conjunctive Normal Form (CNF).

We employ the usual notation ∃ and ∀ to denote existential and universal
quantification over Boolean variables. If ϕ : {0, 1}n → {0, 1} is a Boolean function
written as a propositional formula and we quantify the variables appearing in it, we
get a Quantified Boolean Formula (QBF). If the variables are all quantified at the
front, such as

Φ = Q1x1 . . . Qnxn : ϕ(x1, . . . , xn)

where each Qi is either ∃ of ∀, we say that the QBF Φ is in prenex form and
Q1x1 . . . Qnxn is called the quantifier prefix. If the matrix, ϕ(x1, . . . , xn), is written in
CNF, we say Φ is in Prenex Conjunctive Normal Form (PCNF). If, on the contrary,
the matrix is not normalised, we sometimes say Φ is a quantified Boolean circuit
(QBC).

The satisfiability problem is the problem of deciding whether a given Boolean
formula ϕ is satisfiable: there exists an assignment (b1, . . . , bn) ∈ {0, 1}n such that
ϕ(b1, . . . , bn) = 1. We denote this problem by SAT: the set of binary strings encoding
satisfiable formulae. A computer tool that computes SAT is called a SAT solver.

On the other hand, the problem of deciding whether a quantified Boolean formula
is satisfiable is called the True Quantified Boolean Formula problem. We denote this
problem by TQBF: the set of binary strings encoding satisfiable QBF. A computer
tool that computes TQBF is called a QBF solver.

Complexity theory

We assume basic familiarity with formal language theory and basic computational
complexity theory, but we review the main definitions and results that appear through
this text. For a more consistent introduction to these topics see [5, 30].

The class P is the class of problems computable in polynomial time in the size of
the input.

The class NP is the set of languages (the set of computational problems) that
have polynomial-size certificates that can be deterministically verified in polynomial
time. A problem L is NP-hard if all the problems in NP can be reduced to it
in polynomial time. In other words, for every problem L′ ∈ NP, there exists a
polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that for every
x ∈ {0, 1}∗, x ∈ L′ if and only if f(x) ∈ L. If a problem is in NP and it is NP-hard,
then it is NP-complete.

The satisfiability problem SAT is an NP-complete problem, a result known as
the Cook-Levin theorem. As a result, any other NP problem (Independent Set,

1In this work, XOR is considered exclusively as an infix binary operator.

4

Clique, Vertex Cover, Subset Sum, Sudoku, Graph k-Colorability, etc.)
can be solved by encoding them in a propositional formula and then checking for
satisfiability on a SAT solver. Besides, P = NP if and only if SAT ∈ P. This is
known as the P =? NP question. It is often conjectured that P 6= NP.

On the other hand, TQBF is NP-hard but it is likely not to be NP-complete. This
is because SAT ⊆ TQBF (every propositional formula is an implicitly existentially
quantified formula), so every NP problem can be reduced to TQBF, but we do not
think short certificates exist for every quantified formula, so likely TQBF /∈ NP.

The class coNP is the set of complementaries of NP languages:

coNP = {L ⊆ {0, 1}∗ : L ∈ NP}

The class coNP contains the “negative” version of NP-problems, such as UNSAT.
If NP 6= coNP, then P 6= NP. It is conjectured that NP 6= coNP.

The definition of NP (existence of a polynomial-size certificate) can be generalized.
The class Σp

2 is the class of languages L such that there exists a polynomial-time
verifier Turing machine V and two polynomials p and q such that for all x ∈ {0, 1}∗,
x ∈ L if and only if

∃u1 ∈ {0, 1}p(|x|)∀u2 ∈ {0, 1}q(|x|) : V (x, u1, u2) = 1

The complementary of Σp
2 is Πp

2. If we generalize the previous definition, Σp
i is

the class for which there exist i polynomials such that x ∈ L if and only if

∃u1 ∈ {0, 1}p1(|x|)∀u2 ∈ {0, 1}p2(|x|) . . . Qui ∈ {0, 1}pi(|x|) : V (x, u1, u2, . . . , ui) = 1

where Q is ∃ or ∀ depending on whether i is odd or even. According to this
generalization, NP = Σp

1 and coNP = Πp
1, while P = Σp

0 = Πp
0. The union of all the

Σp
i classes is called the Polynomial Hierarchy, PH:

PH =
⋃
i∈N

Σp
i

It is conjectured that no complete problems exist for PH. If one existed, then
it would be in some level i, and then the hierarchy would collapse to the i-th level:
every other problem could be reduced to one in that level. In particular, if it collapses
to the first level, then P = NP. Since it is conjectured that the hierarchy does not
collapse, there are probably no complete problems for it.

However, each level of the hierarchy does have complete problems. These are
bounded versions of the TQBF problem. The complete problem for Σp

i is the problem
ΣiSAT: quantified formulae starting with ∃ and then alternating i times:

∃x1∀x2∃x3 . . . Qxi : ϕ(x1, . . . , xi)

On the other hand, ΠiSAT is a complete problem for Πp
i . These are formulae of

the form:

5

1. Introduction

∀x1∃x2∀x3 . . . Qxi : ϕ(x1, · · ·xi)

If we do not impose restrictions on the bounded alternation of quantifiers, we get
the TQBF problem, belonging to a class beyond NP and the Polynomial Hierarchy:
PSPACE, the class of problems computable in polynomial space. The TQBF
problem is PSPACE-complete, which means that TQBF ∈ PSPACE (this is
straightforward to see) and every other problem in PSPACE can be polynomial-
time reduced to it (see [5, 27, 30] for a proof). It is conjectured that NP 6= PSPACE.

It should be noted that despite TQBF is PSPACE-complete, this does not mean
that QBF can only model those problems. It can model harder problems too; just
probably not in polynomial size. The same remark applies for SAT.

The last two classes we mention are circuit complexity classes. The class P/poly
is the class of problems solvable by polynomial-size Boolean circuits (although it
can also be defined in terms of Turing machines that receive advice). Another
interesting class of circuits is BH, the Boolean Hierarchy. This is the class of Boolean
circuits over NP predicates. In particular, we remark the class DP, containing
the intersection of problems belonging to NP and coNP. As we will later see, the
Chromatic Number Problem is in this class.

Proof systems, solvers and formats

For a consistent introduction to proof complexity, see [28, 29].
Formally, a proof system for a language L is a binary relation P (τ, ρ) over L

satisfying the following three conditions:

1. (Soundness) ∃ρ : P (τ, ρ)⇒ τ ∈ L

2. (Completeness) τ ∈ L⇒ ∃ρ : P (τ, ρ)

3. (p-verifiability) P (τ, ρ) can be decided in polynomial time

We read P (τ, ρ) as τ is proven in system P by proof ρ. Whenever a proof system
can produce short (polynomial-size) proofs for every string in the language, we
say it is polynomially bounded or p-bounded. More formally, a proof system P is
polynomially bounded or p-bounded if and only if there exists k ∈ N∗ such that for
all τ, ρ ∈ {0, 1}∗

P (τ, ρ)⇒ ∃ρ′ : |ρ′| ≤ (|τ |+ k)k and P (τ, ρ′)

Proof complexity is the field studying the length of proofs in different proof
systems. It is conjectured that the language UNSAT does not have a p-bounded
proof system and, therefore, that there are not always short proofs of unsatifiability.
This amounts to NP 6= coNP, the central conjecture of proof complexity.

An example of a proof system for the language UNSAT is Resolution. A Resolution
refutation of a CNF propositional formula ϕ is a sequence of clauses

6

C1, . . . , Ck, Ck+1, . . . , Cs

such that the first C1, . . . , Ck are the clauses in ϕ and for every k < i ≤ s,

Ci = A ∨B

where (A ∨ x) and (B ∨ ¬x) are clauses that have already been derived.
The process ends when both the clauses x and ¬x have been derived for some

variable x (i.e. we have a contradiction). The size of the proof is the number of
clauses, s.

The Resolution proof system can easily be modified to get a proof system for
TQBF. Such an example is Q-Resolution, introduced in 1995 in [12]. The Q-
Resolution proof system behaves exactly like Resolution but with an additional rule
to derive new clauses. If C = A ∨ x is a derived clause, x appears in C and x is the
outermost universally quantified variable, then A can be derived.

Amongst other things, proof complexity researchers prove that proof systems have
exponential lower bounds: there are formulae that cannot be solved in polynomial
size in that system. For example, in 1985 Haken proved that Resolution has an
exponential lower bound, and because this is a particular case of Q-Resolution, this
system has an exponential lower bound too.

SAT solvers and QBF solvers are computer tools that are built on top of these
proof systems. They use heuristics to decide what rules to apply and when and are
able to output proofs of satisfiability or unsatisfiability in their systems.

These tools get their input formulae written in a specific format. For SAT solvers
this format is usually DIMACS, where formulae are written in CNF. An extension
of this format is QDIMACS, allowing for PCNF QBF. QDIMACS is the format
used by popular QBF solvers like DepQBF. On the other hand, if we are interested
in writing quantified Boolean circuits instead of PCNF formulae, we can use the
QCIR format, supported by solvers like QuAbS. Besides, the QCIR format, as
presented in [25], also allows for the definition of non-prenex formulae, but this is
generally not supported by current solvers.

7

Chapter 2

Formula Families

The purpose of the formal language and tool we are presenting in this work is to
formally capture definitions of QBF families. But what are formula families? What
do they look like? What are they used for? What role do formula families play in
the field of proof complexity?

In this chapter, we answer the questions above and have a look at several formula
families and their definitions. In Section 2.1, we introduce the concept and their
uses as abstract mathematical objects and have a look at a famous example: the
Pigeon Formulae used by Haken in 1985 to show the exponential lower bound of the
Resolution proof system. This is an example where formulae are only existentially
quantified. However, we aim to capture quantified formulae. In Section 2.2, we have
a look at the additional elements we need to build quantified Boolean formulae and
what types of formulae we can distinguish by looking at their syntactic properties.
Finally, in Section 2.3, we offer a concise selection of relevant QBF families from the
literature, paying special attention at the formal elements of their natural-language
definitions as well as to the differences between them to distinguish what essential
features should our language have to capture all of them effectively.

2.1 Formula families: what they are — and what for

In 1971, Stephen Cook proved that SAT is an NP-complete language. His famous
result, today broadly known as the Cook-Levin theorem —what we could perhaps
refer to as the Fundamental Theorem of Complexity Theory—, shows that every
NP-language can be reduced to SAT instances and, therefore, that every NP-
problem corresponds to a set of Boolean formulae. In the light of this theorem,
much of the research around the P =? NP question was reduced to the domain
of propositional formulae. In particular, instead of developing algorithms for each
one fo the thousands of very different NP-problems, efforts have been directed to
designing very fast SAT solvers. When presented with the challenge of solving an
NP-problem, it is now customary to model the problem into SAT instances and then
solve them via state-of-the-art SAT solvers, capable of quickly producing outputs in
most situations.

9

2. Formula Families

When modelling a problem into logic, we describe what the formulae look like in
terms of some parameters. For instance, if we are modelling a graph-based decision
problem such as Independent Set, the input of the original problem would be a
graph G and a natural number k. The abstract description of the formulae would be
written in terms of these parameters, and when given specific values for them, we
could obtain a concrete formula that could then be solved in a SAT solver. If I(G, k)
is a propositional formula that is true if and only if G has an independent set of
size k, then the set {I(G, k) : G is a graph and k ∈ N∗} is the formula family. The
definition is just the formal description of what Boolean variables and clauses the
formulae consist of.

Thus, we distinguish between the formula family and the formula family definition.
The definition is the description of the family: it describes the syntactic and/or
semantic features of the formulae in terms of the parameters, whilst the set with all
the formulae described by the definition is the formula family, the actual mathematical
object.

When looking at formula families this way, one may think the main purpose is
to convert real-world problems into logic to then solve them through automated
reasoning tools like SAT solvers. Though not completely false, that is not necessarily
the main objective of formula families as presented from this conceptual perspective.
When interested in solving real-world problems, we usually need more convenient
tools for modelling of complex systems and knowledge representation. Formula
families can theoretically capture any of those problems, but their definition as
single propositional formulae is cumbersome and counterintuitive. Usually, we model
these problems into theories, with several separate formulae and usually in a more
convenient language in first-order logic with extensions, and the conversion to SAT-
instances is hidden to the user. Therefore, if this approach is that inconvenient, what
is the purpose of formula families?

The answer is proof complexity, a domain where formula families are extensively
used in this manner because we are not that interested in solving actual problems,
but, more pessimistically, in showing that certain formulae are hard to solve. Think
of a proof system underlying some powerful SAT solver, such as Resolution. The
system may be powerful in that it can prove the unsatisfiability of many formulae
in polynomial size. However, proof complexity theorists are interested in showing
that there exist formulae that cannot be succinctly proven in that system (as,
otherwise, NP = coNP, which goes against the fundamental conjecture of proof
complexity). The main task here is to find exponential lower bounds for specific
proof systems: finding formula families that need super-polynomial-size proofs in a
given system. And, naturally, when faced with this challenge, we are not interested
in very complicated problems with very intricate encodings. We look for simple,
succinct and easy to manipulate formulae, so that reasoning about proof-length lower
bounds on them can be easy.

The most representative use of a formula family for this purpose is perhaps the
encoding of the Pigeonhole Principle given by Cook and Reckhow in 1979 (see [16])
and later used by Haken to show an exponential lower bound for Resolution through
the now-famous bottleneck method (see [20] for the original proof and [7] for a modern

10

2.1. Formula families: what they are — and what for

version by Beame and Pitassi, more recently reproduced in [5]). Haken showed that
a certain propositional encoding of the Pigeonhole Principle needs exponential-size
proofs in the Resolution proof system. Let us have a look at what this formula family
looks like to get a first contact with them.
Example 2.1 (The Pigeonhole Formulae). The Pigeonhole Principle is a simple com-
binatorial property of sets, underlying many relevant theorems across mathematics:
if we have m pigeons and n holes, and m > n, then there must be a hole with more
than one pigeon. More formally, if m,n ∈ N∗ and m > n, then there exists no
bijection from the set {1, . . . ,m} to the set {1, . . . , n}.

Most undergraduate textbooks would say that the statement can be proven
through straightforward induction, left as an exercise to the reader. But what
happened if the proof system we worked with did not have induction? What if we
tried to prove the Pigeonhole Principle in a system like Resolution? Very likely, the
system would get lost in the locality of the formulae and it would need exponentially
many steps to prove the tautology — it would assign some pigeons, see that it does
not work, start over, and so on.

In order to study the Pigeonhole Principle under Resolution, we first need to
encode the theorem into propositional logic formulae written in CNF. The following
encoding is a simplified version of the original, summarised in [5]. We will work with
the formula PHPm

n stating that “there exists a bijection from [m] to [n]”. Clearly, if
m > n, PHPm

n is always false: PHPm
n ∈ UNSAT and ¬PHPm

n ∈ TAUT.
Our formulae will be written in terms of variables pi,j . Semantically, pi,j is true

if and only if pigeon i is assigned to hole j.
These variables are arranged in two types of clauses:

1. Each pigeon is assigned to some hole:

(pi,1 ∨ · · · ∨ pi,n)

2. The k-th hole doesn’t get both the i-th and j-th pigeons:

(¬pi,k ∨ ¬pj,k)

Thus, the complete Pigeonhole Formulae have the following form:

PHPm
n =

∧
i≤m

(pi,1 ∨ · · · ∨ pi,n) ∧
∧

i,j≤m
k≤n

(¬pi,k ∨ ¬pj,k)

The Pigeonhole Formula Family is the set

PH = {PHPm
n : m,n ∈ N∗}

In particular, as shown in Haken’s theorem, all formulae in the subfamily

{PHPn
n−1 : n ∈ N and n ≥ 2} ⊆ PH

need proofs of length at least 2n/20 in the Resolution proof system.

11

2. Formula Families

Clearly, the Pigeonhole Principle does not encode a very interesting property.
After all, we could have convinced ourselves of the same fact by a simple proof by
induction. But, again, that is fine for proof complexity: the propositional encoding
is simple (it contains only two types of clauses and a small amount of variables,
all with the same meaning), and thus it is simple to reason on them. In fact, the
contemporary version of the proof of Haken’s theorem, by Beame and Pitassi, makes
a further simplification of these formulae by making them monotone in order to put
their argument across.

It is therefore clear that when encoding computational problems into logic, the
conceptual approach of formula families does not primarily cater for real-world
problems or knowledge representation, but mainly for theoretical results on proof
systems. This will become even more apparent when we have a look at different
formula families from the literature and see that many of them do not even have
intuitive meaning.

2.2 Formula families in the QBF domain

The example we just covered might seem strained in that it only needs propositional
formulae without quantification (or implicitly existentially quantified). Since in this
work we aim at covering quantified Boolean formulae, we must now look at further
constructs that allow for quantification of variables. A formula family will now be
capturing any PSPACE language, though in many cases it will not be obvious
whether a certain formula family corresponds to a natural problem.

Before looking at actual formula family definitions from the literature, we will
first discuss what shape can the basic components of a QBF take.

2.2.1 The matrix: CNF versus circuits

The matrix of a QBF is the propositional body, the formula written from propositional
variables and connectives. For representing these, we have the same distinctions that
we would have when working with SAT-formulae. Once variables have been defined,
these are organised in either clauses or gates.

If we use clauses, then we aim at writing the formulae in clausal form, often in
CNF. This is the case of the Pigeonhole Formulae, where no restriction is imposed
on the number of disjuncts on a clause. Alternatively, the matrix can be written
in Disjunctive Normal Form (DNF), a format that seems to have some interesting
benefits for QBF solvers if properly balanced (see [32]).

Modelling using CNF is sometimes cumbersome, as we are forced to reformulate
conditions that would otherwise seem natural. For this purpose, matrices can be
written more freely in circuit format, where we allow any configuration of variables
and propositional connectives and no normalised format restriction is imposed. In
the domain of SAT solvers, most tools tend to accept inputs in CNF only, usually
encoded in the DIMACS format, because it makes solving significantly easier. This
has been no big issue because any propositional formula can be converted into normal

12

2.2. Formula families in the QBF domain

form without increasing its size excessively via Tseitin transformations and other
techniques (see [35, 31]).

Surprisingly though, in the domain of QBF solvers, the situation is somewhat
different. Because formulae need to be verified for satisfiability under quantification,
CNF seems to hide relevant and exploitable structural properties of formulae (see
[25]). As a result, apart from the QDIMACS format to write PCNF QBF, there
are solvers working under the QCIR format ([25]), that defines quantified Boolean
circuits. It is thus very common to find family definitions in the literature directly
written as circuits.

2.2.2 Quantification: prenex versus non-prenex formulae

Arguably, the main distinction between SAT solvers and QBF solvers is that now
formulae are quantified. On this issue, two different approaches exist.

One could opt to quantify the formula at the beginning, preceding the matrix by
a sequence of quantifiers and variables. Something like

∃x∀y∃z . . . : ϕ(x, y, z, . . .)

where ϕ is the matrix and we assume no quantifiers to appear in there is known
as prenex form, and it is the most usual way to write formulae.

Alternatively, if quantifiers appear in the matrix and not only in a quantifier
prefix, we say that the formula is non-prenex. In the same way that circuits allow
for a more natural encoding of problems, non-prenex is more intuitive than the
prenex format in many situations. Unfortunately, until very recently not many
efforts have been directed at studying proof complexity of non-prenex formulae. The
QCIR format allows it, but solvers do not consistently support it at the time of
writing this work. However, there have been some recent attempts at designing proof
systems with nice properties beyond prenex forms (see [13]) and in [34] Tentrup used
non-prenex formulae for some practical problem-solving.

2.2.3 Does format matter?

It would seem that non-prenex circuits are the ablest format, as they allow for the
most natural representation. Though this is true, we shall recall that we are not
particularly interested in easily writing complex formulae, but in having concise,
easy-to-write formulae that are hard. As a result, in proof complexity, some format
restriction can be useful to ease formula manipulation in proofs. In this regard,
non-prenex forms are nowhere to be found in the current literature and we will not
be seeing any examples in this chapter.

Besides, format does seem to have some influence in solving performance and
thus in the complexity of the formulae. It has been shown that when converting
matrices to CNF via a Tseitin transformation, adding the auxiliary variables at
the end of the quantifier prefix can provoke an exponential blowup in the proofs.
This exponential separation was theoretically proven in [9] and we have empirically
observed it in the Chen Formulae of Type 2 as we will later explain in Section 5.4.

13

2. Formula Families

On the other hand, the potential additional hardness imposed by prenexing
techniques (such as the ones discussed in [18]) have not been thoroughly studied
theoretically, so it is not completely clear whether they have any influence complexity-
wise.

All in all, it is safe to say that format does matter. On the one hand, restrictions
are sometimes nice for proof complexity matters and, at the same time, it seems like
the SAT and the TQBF problems are much more different than one might expect
and that solving strategies may be different in nature and somewhat determined by
format restriction.

For the rest of this work, we will focus mainly on prenex formulae, both in CNF
and as circuits. The language we will present in Chapter 3 allows the definition
of non-prenex QBF, but given the rudimentary —if not nonexistent— support in
currently available solvers, that should be considered only an experimental feature
and we will not discuss it at length.

2.3 Formula family definitions: a tour d’horizon
To get an idea of how formula families show up in the proof complexity literature,
we now present a short collection of definitions. We start by having a look at the
Chen Formulae of Type 1 and 2 (Definitions 2.1 and 2.2), two families that will let us
have a closer look at the distinction between CNF and circuits. We then present the
QParity formulae in their circuit version (Definition 2.3), a simple yet paradigmatic
example of what a formula family definition looks like. In order to open the doors to
modelling more complex PSPACE problems, we present the Chromatic Formulae
(Definition 2.4), which take a graph as input, a very unusual yet interesting case in
the literature. Finally, we present two more classes in CNF: the Janota Formulae
(Definition 2.5), an interesting a approach to hard-to-prove contradictions based on
two-player PSPACE games; and the KBKF formulae (Definition 2.6), a classic
family in the early literature.

This selection of families is representative of both the definition styles as well
as the tendencies to specific formats often used in the field of proof complexity of
quantified Boolean formulae. Next chapter, we will use some of these formulae as
examples of the expressive power of our formal language and in Chapter 4 we will
study in detail an additional problem, not covered in this section: Generalized
Geography.

2.3.1 Chen Formulae of Type 1

In [14], Chen showed that the QU-Resolution proof system is surprisingly more
powerful than we might think. Although Haken’s theorem also holds for this
system, because for existentially quantified formulae QU-Resolution behaves just
like Resolution, this system can find short proofs of formulae where intuitively more
powerful systems cannot.

He showed this by introducing a formula family that we call the Chen Formulae
of Type 1. These formulae have linear-size proofs in QU-Resolution and are defined

14

2.3. Formula family definitions: a tour d’horizon

in CNF. They constitute the paradigmatic example of a CNF definition by the
explicit declaration of variables, quantifier blocks and conjunction of clauses.

Definition 2.1 (Chen Formulae of Type 1, [14]). Let n ∈ N∗. For every i ∈ {0}∪ [n],
let Xi be the set of variables {xi,j,k | j, k ∈ {0, 1}}. Analogously, let X ′i = {x′i,j,k |
j, k ∈ {0, 1}}, except for i = 0, when X ′i is not defined. Additionally, we have, for
every i ∈ N∗, a variable yi. With these variables, we define Pn to be the quantifier
prefix ∃X0∃X ′1∀y1∃X1...∃X ′n∀yn∃Xn. Now, we define the following sets of clauses:

• B = {(¬x0,j,k) | j, k ∈ {0, 1}} ∪ {(xn,j,0 ∨ xn,j,1) | j ∈ {0, 1}}

• For every i ∈ [n] and every j ∈ {0, 1},

Hi,j = {(¬x′i,0,k ∨ ¬x′i,1,l ∨ xi−1,j,0 ∨ xi−1,j,1) | k, l ∈ {0, 1}}

• For every i ∈ [n],

Ti = {(¬xi,0,k ∨ yi ∨ x′i,0,k | k ∈ {0, 1}} ∪ {(¬xi,1,k ∨ ¬yi ∨ x′i,1,k) | k ∈ {0, 1}}

Then C1(n) = Pn : ϕ is a Chen Formula of Type 1, where Pn is the prefix vector
defined before and ϕ is the Boolean formula obtained from the conjunction of all the
clauses in B, Hi,j and Ti for every i ∈ [n] and every j ∈ {0, 1}.

2.3.2 Chen Formulae of Type 2

In that same paper ([14]), Chen also showed an exponential lower bound for a
seemingly more powerful system he defined (Relaxing QU-Resolution). He showed
that the Chen Formulae of Type 2 need exponential-size proofs in that system.

Definition 2.2 (Chen Formulae of Type 2, [14]). Let n ∈ N∗ and let Pn be the
quantifier prefix ∃x1∀y1 . . . ∃xn∀yn. Now, we consider Boolean circuits ϕn such that
ϕn is true if and only if

∑n
i=1(xi + yi) 6≡ n (mod 3). A QBF C2(n) = Pn : ϕn is

called a Chen Formula of Type 2.

In contrast with Definition 2.1, which provides a complete syntactic description of
Type 1 formulae in CNF, Type 2 formulae are described in a much subtler way. The
quantifier prefix is precisely described (Pn = ∃x1∀y1 . . . ∃xn∀yn), but the formula’s
matrix is defined by an arithmetic property, a simple semantic condition, as that is
all he needs to prove the exponential lower bound. As a result, it is not specified
whether they should be built in CNF or as circuits.

However, if we try to write them in CNF without any additional variables, we
will soon see that we need exponentially many clauses. We will now discuss how
to build these Boolean formulae in a way that does not lead to a combinatorial
explosion, which will invite us to use the more intuitive circuit representations.

We will first see the shortcomings of using CNF without any auxiliary variables.
Let n be a positive natural number, and let us consider the Boolean formulae

ϕn, which we will simply refer to as ϕ. These are simply Boolean formulae over 2n

15

2. Formula Families

variables, such that for all assignments (x1, y1, . . . , xn, yn) that make ϕ true, it must
hold that

n∑
i=1

(xi + yi) 6≡ n (mod 3)

The question is: what formulae verify this property?
Let S =

∑n
i=1(xi +yi). It is clear that, since there are 2n terms in the sum, which

can take value either 0 or 1, the total value of S must be between 0 and 2n. Some
values in the set {0, . . . , 2n} of possible values for S will be congruent with n (mod 3)
while others will not. Approximately one third of the values in the set of possible
values for S will be congruent with n (mod 3). The values in the set for which the
congruence holds are what we call the problematic values and we want to rule out
assignments adding up to one of those values: we want to build a formula such that
whenever an assignment leads to S being a problematic value, the formula is falsified.
On the other hand, all assignments that lead to a normal, non-problematic value of
S, must make the formula true.

Let us consider, for instance, the case for n = 2, where we have a formula
ϕ(x1, y1, x2, y2). We have S = (x1 + y1) + (x2 + y2) ∈ {0, 1, 2, 3, 4}. There is a
single problematic value in this case, S = 2. This means that we must rule out all
assignments with two 1’s, while the rest of them must make the formula true. For each
problematic assignment we can build a specific clause such that only that assignment
makes it false. For n = 2, the problematic assignments and their corresponding
clauses are the following:

(0, 0, 1, 1)→ (x1 ∨ y1 ∨ ¬x2 ∨ ¬y2)
(0, 1, 0, 1)→ (x1 ∨ ¬y1 ∨ x2 ∨ ¬y2)
(1, 0, 0, 1)→ (¬x1 ∨ y1 ∨ x2 ∨ ¬y2)
(0, 1, 1, 0)→ (x1 ∨ ¬y1 ∨ ¬x2 ∨ y2)
(1, 0, 1, 0)→ (¬x1 ∨ y1 ∨ ¬x2 ∨ y2)
(1, 1, 0, 0)→ (¬x1 ∨ ¬y1 ∨ x2 ∨ y2)

The conjunction of those clauses is a Boolean formula written in Conjunctive
Normal Form, verifying the desired modular property. In general, we can build Chen
Formulae of Type 2 by looking for the problematic values in {0, . . . , 2n} and then
adding a clause for each assignment that makes S add up to one of those values.

The reader may feel, however, that there are shortcomings to this representation
of ϕ. The most urgent concern comes from the nagging question of how many clauses
will ϕ have when written this way? The set of all possible assignments has cardinality
22n = 4n. Since, on average, one third of those assignments are related to problematic
values of S, ϕ would end up having

⌈4n

3
⌉
clauses. It is intuitive to see why this

happens, though we can look for a more convincing proof in the fact that the exact
number of clauses C is determined by the following sum, which turns out to be the
mentioned

⌈4n

3
⌉
:

16

2.3. Formula family definitions: a tour d’horizon

C =
b 2n

3 c∑
i=0

Ç
2n

3i+ (n mod 3)

å
=
°4n

3

§
The previous equality can be easily checked by induction.
Fortunately, Chen Formulae of Type 2 admit a succinct representation when

written in the form of a circuit, where we do not force ϕ to be in CNF and we are
allowed some additional operators, such as XOR gates (⊕). We now explain how to
build these circuits.

For every k ∈ {1, . . . , n} and every m ∈ {0, 1, 2}, we will now consider the
auxiliary circuits µk

m over variables (x1, y1, . . . , xk, yk), which are defined so that they
verify the following property:

µk
m = 1⇔

k∑
i=1

(xi + yi) ≡ m (mod 3)

For k = 1, the µ-circuits are:

µ1
0 = ¬x1 ∧ ¬y1

µ1
1 = x1 ⊕ y1

µ1
2 = x1 ∧ y1

If we have circuits µk
m for every k up to n− 1, we can easily obtain the ones for n:

µn
0 = (µn−1

0 ∧ ¬xn ∧ ¬yn) ∨ (µn−1
1 ∧ xn ∧ yn) ∨ (µn−1

2 ∧ (xn ⊕ yn))

µn
1 = (µn−1

0 ∧ (xn ⊕ yn)) ∨ (µn−1
1 ∧ ¬xn ∧ ¬yn) ∨ (µn−1

2 ∧ xn ∧ yn)

µn
2 = (µn−1

0 ∧ xn ∧ yn) ∨ (µn−1
1 ∧ (xn ⊕ yn)) ∨ (µn−1

2 ∧ ¬xn ∧ ¬yn)

Now, we can easily express our formula ϕ as

ϕ = ¬µn
n mod 3

Since the size of every µ-circuit is constant and we have three µ-circuits for every
k ∈ {1, . . . , n}, we have 3n auxiliary circuits plus the final one for ϕ, which means
we can build Chen Formulae of Type 2 in size Θ(n) when building them as circuits.

2.3.3 QParity Formulae

The QParity formulae were first introduced in [11] and later used in [9] to show
that Extended Q-Resolution can find short proofs of them, while Weak Extended
Q-Resolution needs exponential size to show their unsatisfiability1.

They are defined as follows:
1This is related to the question of complexity of CNF transformation. When writing these

formulae in CNF, putting the auxiliary variables existentially quantified at the end of the existing

17

2. Formula Families

Definition 2.3 (QParity circuits, [9]). Let n ∈ N, n ≥ 2, and let x1, . . . , xn and z
be Boolean variables. We define the quantifier prefix Pn = ∃x1 . . . ∃xn∀z. We define
an auxiliary circuit t2 as t2 = x1 ⊕ x2 and for i ∈ {3, . . . , n} we define auxiliary
t-circuits as ti = ti−1⊕xi and the complete matrix as ρn = tn⊕z. The QBF instance
will be QParityn = Pn : ρn.

The formulae express that there exists an assignment to the x-variables such that
x1⊕ · · · ⊕ xn is neither 0 nor 1, an obvious contradiction, which makes the QParity
formulae always unsatisfiabiable.

In this case, it is possible to obtain a CNF version of these formulae considering
the t-circuits to be auxiliary variables and expressing the ⊕ operation and assignment
as the conjunction following conjunction, for i ∈ {3, . . . , n}:

(¬ti−1 ∨ ¬xi ∨ ¬ti) ∧ (ti−1 ∨ xi ∨ ¬ti) ∧ (¬ti−1 ∨ xi ∨ ti) ∧ (ti−1 ∨ ¬xi ∨ ti)

Then, we could define a new quantifier prefix with this additional variables:

∃x1 . . . ∃xn∀z∃t2 . . . ∃tn

Slightly modifying the QParity formulae we can obtain a close family, the
QInnerProduct formulae, where each variable xi is now interchanged with the
conjunction of two new variables, yi and zi.

The QParity definition is interesting in that it has all the defining characteristics
of a formula family used for proof complexity purposes: they have no interesting
meaning, they are easy to define and manipulate and they can be easily converted
into CNF —and vice versa.

2.3.4 Chromatic Formulae

The Chromatic Number Problem is a well-known DP-complete problem: given a
graph G and a natural number k ≥ 1, decide whether k is the chromatic number of G,
i.e. the minimum k such that G is k-colorable. Although this is close to k-colorability
and can be encoded into a SAT formula, a more natural encoding is also possible
using quantification: there exists a coloring of G with k colours and for all other
coloring of size k − 1, these are not valid colorings for G.

We need to define a formula family for the problem, depending on two parameters:
the graph G and the number k. The following definition or encoding for this problem
was given by Sabharwal et al. in [32].

Definition 2.4 (General Chromatic Formulae, [32]). Let G = (V,E) be a graph and
let k be a positive natural number. Let n = |V |. We define variables xi,j for i ∈ [n]
and j ∈ [k] and yi,j for i ∈ [n] and j ∈ [k − 1] (semantically, any of these variables is

prefix causes the formulae to be hard in the weak version of the proof system. It is an open question
what should the optimal position of auxiliary quantifiers be when performing the transformation
—or whether there exists such an optimal placement strategy.

18

2.3. Formula family definitions: a tour d’horizon

set to 1 if and only if node i is set to have colour j). Then we define the following
two subformulae:

Γ =
∧

i∈[n]
(xi,1 ∨ · · · ∨ xi,k) ∧

∧
i∈[n]

j 6=j′∈[k]

(¬xi,j ∨ ¬xi,j′) ∧
∧

(i,i′)∈E
j∈[k]

(¬xi,j ∨ ¬xi′,j)

∆ =
∨

i∈[n]
(¬yi,1 ∧ · · · ∧ ¬yi,k−1) ∨

∨
i∈[n]

j 6=j′∈[k−1]

(yi,j ∧ yi,j′) ∨
∨

(i,i′)∈E
j∈[k−1]

(yi,j ∧ yi′,j)

Semantically, Γ is true when the x variables form a legal k-coloring, while ∆
is true only when the y variables do not form a legal (k − 1)-coloring. Thus, the
Chromatic Formula is

K(G, k) = ∃x1,1 . . . x1,k . . . xn,1 . . . xn,k∀y1,1 . . . y1,k−1 . . . yn,1 . . . yn,k−1 : Γ ∧∆

Regarding the definition’s structure, it is interesting because it is the first family
we encounter that has two parameters, and, besides, one of them is a mathematical
object different from a natural number. The support for non-scalar parameters in
formula family definitions is discussed at length next chapter.

2.3.5 Janota Formulae

As we will further discuss in Chapter 4, many PSPACE problems take the form
of two-player games than can be encoded in QBF considering we have a universal
player and an existential player.

The Janota formulae, first introduced in [24] and later used in [23], consider a very
simple two-player game on over the Cartesian product of two sets A = {a1, . . . , an}
and B = {b1, . . . , bn}. We represent the Cartesian product as in Figure 2.1 and let
the existential player start the game by deleting a cell from every column. Then, the
universal player chooses one of the two rows and if the chosen row contains all the
elements in A or all the elements in B, then the universal player wins. The universal
player has a winning strategy for this game (see [23] for the argument).

a1 . . . a1 . . . an . . . an

b1 . . . bn . . . b1 . . . bn

Figure 2.1: Board for the Janota Formulae game (as depicted in [23]).

The game is encoded into a QBF formula over variables xi,j (these are true if
and only if the existential player deletes the i-th cell from the j-th column) and a
variable z denoting whether the universal player chooses the first or the second row.
Finally, we add variables ai and bi used to make sure that if either of the sets is
complete in one of the rows, the formula is falsified. Then, because there is a winning
strategy for the universal player, the formula is always unsatifiable.

19

2. Formula Families

Definition 2.5 (Janota Formulae, [23]). Let n be a positive natural number. We
consider the sets of variables X = {xi,j |i, j ∈ [n]} and L = {ai|i ∈ [n]} ∪ {bi|i ∈ [n]}.
The Janota formula of size n is defined with the conjunction of the following clauses:

xi,j ∨ z ∨ ai where i, j ∈ [n]

¬xi,j ∨ ¬z ∨ bi where i, j ∈ [n]∨
i∈[n]
¬ai

∨
i∈[n]
¬bi

The QBF is

Jn = ∃X∀z∃L : ϕ

where ϕ is the conjunction of the defined clauses clauses.

Janota formulae are interesting for two reasons. Firstly, because of the quantifier
vector, as it provides a case were we define a vector based on a block and not on
quantification over each one of the variables. Secondly, it presents a way to define
unsatisfiable formulae from simple two-player games, a prolific source of hard-to-prove
contradictions for proof complexity research in the PSPACE domain.

2.3.6 KBKF Formulae

The Kleine-Büning-Karpinski-Flögel formulae, or KBKF for short, were first intro-
duced in [12] and have been later extensively used in proof complexity. There are
several variants of this family depending on the proof system for which we want them
to be difficult. Here we present a version of the original definition, as formulated
in [11], as the variants do not present any particular differences regarding their
definition style.

Definition 2.6 (KBKF Formulae, [11]). Let t ∈ N∗. We define the prefix

Pt = ∃y0y1,0y1,1∀x1∃y2,0y2,1∀x2 . . . ∀xt−1∃yt,0yt,1∀xt∃yt+1 . . . yt+t

Now we define the following clauses:

C_ = ¬y0
C0 = y0 ∨ ¬y1,0 ∨ y1,1
C0

i = yi,0 ∨ xi ∨ ¬yi+1,0 ∨ ¬yi+1,1 where i ∈ [t− 1]
C1

i = yi,1 ∨ xi ∨ ¬yi+1,0 ∨ ¬yi+1,1 where i ∈ [t− 1]
C0

t = yt,0 ∨ xt ∨ ¬yt+1 ∨ · · · ∨ ¬yt+t

C0
t = yt,1 ∨ xt ∨ ¬yt+1 ∨ · · · ∨ ¬yt+t

C0
t+i = xi ∨ yt+i where i ∈ [t]

C1
t+i = ¬xi ∨ yt+i where i ∈ [t]

20

2.3. Formula family definitions: a tour d’horizon

The KBKF QBF KBKF t is formed with the defined prefix Pt and the matrix
obtained from the conjunction of all those clauses.

KBKF formulae are interesting because of their somewhat cumbersome structure,
where a single parameter t defines a quite intricate quantifier vector, with some work
on the prefix to perform. This is the first quantifier prefix were some of the subindices
contain operations, such as t+ t, t− 1 or t+ i, rather than simple iterations over
ranges.

21

Chapter 3

The Formal Language

In the previous chapter, we discussed what formula families are and what they look
like. The main goal of this work is to present a formalism in which to easily write
such definitions so that some computer program can later read and output instances.
In this chapter, we turn our attention to the question of designing and specifying
such a formal language.

In Section 3.1, we discuss the ideal features we would like our language to have,
basing our decision on the definition styles and needs seen in the previous chapter.
One of the main challenges in creating a language is to somewhat constrain the
definitions to fundamental syntactic structures that can, at the same time, be as
expressive as possible. Our formal language relies on the structure of blocks, sequences
of literals that can be used to build both gates, clauses or quantifier prefixes. We
present blocks —and its underlying components, bricks— in Section 3.2, and have a
quick look at how they can be used to build formulae. We also look at how blocks
written in the language are intended to be unfolded into actual sequences or literals
(what we call the process of fix-and-expand). In Section 3.3, we give the formal
encoding of two of the formula families defined in Chapter 2: the QParity and the
Chromatic Formulae. Appendix A contains the full grammar of the language and
Appendix B collects the formal version of all the other formula families covered so
far. Finally, Section 3.4 briefly discusses the expressive power of the language and
some potential formula family ideas that could be explored in this framework.

3.1 Some notes on desired features

Looking at the different examples of formula families in the previous chapter, we
could say that the following features should at least be covered in our formalism:

• Both variables and clauses (or gates) should be easily grouped together and
operated to build more complex structures, let that be either quantifier prefixes
or matrices.

• Parameters could be something different from natural numbers (e.g. graphs).

23

3. The Formal Language

• Parameters are not static (they are not used to define ranges as they are; they
need to be operated and manipulated easily).

• Both CNF and circuits formats must be natively supported.

• Formal definitions should be as declarative as possible in nature.

• Formal definitions should be written via some fundamental construct that
constrains the syntax of the definition while not restricting expressive power.

• It should be possible to encode a wide range of formula families, even those
with parameter types not expected at this moment.

All these features boil down to two essential problems:

1. We need a basic declarative construct to build the matrix and the quantifier
prefix.

2. The description of these constructs depends on the parameters of the formula
family. These parameters can take any potential data type defined by the user
and it must be easy to manipulate them.

To tackle the first goal we present the structure of blocks, which we discuss in the
next section. The problem of having different data types and operations on them is
solved embedding an external language (Python) into our own. We discuss this in
Section 3.3.2 when we encode the Chromatic Formulae in our language.

3.2 The block structure
We have identified two main needs in the design of our language. First, a declarative
construct to build the formulae. And second, effective ways to represent different
parameter data types and operations on them. We now solve the former problem:
we give a formalism in which to write the body of the definitions1.

In this regard, our formal language relies on the basic concept of blocks. A block
is a sequence of bricks, which are literals (input variables that may be negated) or
references to other blocks (also possibly negated). A block can then be assigned a
single attribute, i.e. a quantifier or a logical operator (conjunction, disjunction or
exclusive disjunction).

We can define a block in a single line like this:

define block B := x, -y, A;

where x and y are Boolean variables, y is negated and A is a previously defined
block. To add an attribute to a block, we specify if we operate it or quantify it (a
block can only have one attribute). Some possible attributes for our block are:

1Appendix A contains the complete grammar or the language we are going to discuss. Here, we
will only go through its basic syntax and features using some intuitive examples.

24

3.2. The block structure

block B operated with OR;
block B operated with AND;

−→ B = x ∨ ¬y ∨A
−→ B = x ∧ ¬y ∧A

We also have the XOR operator whenever the block has only two bricks. On the
other hand, if the block does not have negations (imagine define block B := x,
y, A), then we can add quantifiers:

block B quantified with E;
block B quantified with A;

−→ B = ∃x∃y∃A
−→ B = ∀x∀y∀A

Let us now show how blocks can be combined to build a simple quantified Boolean
formula.
Example 3.1 (Basic use of blocks). The formula ϕ(x, y, z) = (x∨y)∧z can be defined
in our language using two blocks B1 and B2 (assuming that the variables x, y, z have
already been declared):

define block B1 := x, y; define block B2 := B1, z;

Blocks only declare ordering of bricks. Syntactically, they are just a sequential
construction. Meaning is later given through an attribute, which will make the block
into the component of a quantifier prefix or a gate in the matrix. In this case, we
are encoding a simple propositional formula, so the attributes are the and and or
operators. These operate between them all the bricks in the block.

block B1 operated with OR; block B2 operated with AND;

However, note that inasmuch blocks only define ordering of literals, the structure
captures simultaneously both the idea of gates on a Boolean circuit as well as the
intricate nested patters of quantifier prefixes. Imagine that the previous formula is
quantified as follows:

∀x∃y∃z : ϕ(x, y, z)

We can define some blocks to obtain the structure of the quantifier prefix by
first combining the blocks so that they order the variables appropriately and then
specifying the attribute of the blocks:

define block Q1 := x;
define block Q2 := y, z;
define block Q := Q1, Q2;

block Q1 quantified with A;
block Q2 quantified with E;

Then, we can combine the quantifier prefix block Q with the block B2 representing
ϕ and indicate that this is our output block.

25

3. The Formal Language

define block Phi := Q, B2; output block: Phi;

The previous example showcased the use blocks, but it defined a single formula,
while our goal is to describe the general structure of formulae belonging to a family.
In other words, the structure will depend on some parameters. The next example in-
troduces a more complex definition and uses two other languages features: conditions
and groupings.
Example 3.2 (Defining a simple formula family). Let n ∈ N∗. We will consider the
formula family containing QBF over variables x1, . . . , xn, y1, . . . , yn of the form

Φ(n) = ∃x1∀y1∃x2∀y2 . . . ∃xn∀yn : ϕ(x1, . . . , xn, y1, . . . , yn)

where ϕ is the matrix is given by

ϕ(x1, . . . , xn, y1, . . . , yn) = (
n∨

i=1
¬xi) ∧

n∧
i=1

(xi ∨ yi)

For instance, in n = 2, the QBF is:

Φ(2) = ∃x1∀y1∃x2∀y2 : (¬x1 ∨ ¬x2) ∧ (x1 ∨ y1) ∧ (x2 ∨ y2)

We start by defining the parameters and the variables:

parameters: {
n : int, ‘n >= 1‘;

}

variables: {
x(i) where i in 1..n;
y(i) where i in 1..n;

}

As we can see, we specify the data type of the parameter n and impose the
constraint that it must be positive. For the variables, whenever these have some
indices, we must specify their ranges.

Now we define the quantifier prefix. First, define some blocks QX(i) and QY(i)
that we will later quantify. These blocks are grouped. The grouping is just a collection
of blocks, but it is not a block itself.

define blocks grouped in QX {
QX(i) := x(i);

} where i in 1..n;

define blocks grouped in QY {
QY(i) := y(i);

} where i in 1..n;

The reason we want groupings is that it makes operating things easier. Now, to
add the existential and universal quantifier, we just write:

all blocks in QX quantified with E;
all blocks in QY quantified with A;

This will add the corresponding attribute to every block in those groupings. We
are now left with the task of composing those blocks into the quantifier prefix, Q:

26

3.2. The block structure

define blocks {
QXY(i) := QX(i), QY(i);

} where i in 1..n;

define blocks {
Q := QXY(i);

} where i in 1..n;

Before we go on with the example, it is interesting to say a few words about the
intended way in which these blocks are then supposed to unfold. For instance, the
two following block definitions are different:

define blocks {
X(i) := x(i);

} where i in 1..n;

define blocks {
X := x(i);

} where i in 1..n;

The first piece of code defines n different blocks, each one containing a single
variable. On the other hand, the second piece of code defines a single block, X, whose
content is the sequence of all x-variables. If we were to expand X, we would see that
it contains x(1), x(2), . . . , x(n). We refer to this way of depth-first unfolding
of blocks as fix-and-expand. When going through the ranges, we first fix the values
of the indices appearing in the left-hand side of the definition, and in the right-hand
side, we expand: if a certain index does not have a fixed value, then we expand that
brick by writing all its occurrences that meet the ranges defined in the where clause.
Thus, in the definition of X, no index is fixed in the left-hand side, and therefore
the x(i) brick is expanded, while in the definition of X(i) := x(i) we first fix the
value of i in the left-hand side and then we only write one occurrence of x(i) in the
right-hand side: X(1) := x(1), X(2) := x(2) and so on.

Back to our example, we are left with the task of defining the matrix of the
formula. The disjunction of all the negated x-variables can be expressed in a single
block, while the clauses containing the pairs of xi and yi variables will be n different
blocks. We write that as follows:

define blocks {
X := -x(i);

} where i in 1..n;

define blocks grouped in XY {
XY(i) := x(i), y(i);

} where i in 1..n;

Regarding operators, we add them as follows:

block X operated with OR;
all blocks in XY operated with OR;

Then we define the complete ϕ matrix in a block called F and we operate the
bricks inside with conjunction:

define blocks {
F := X, XY(i);

27

3. The Formal Language

} where i in 1..n;

block F operated with AND;

Finally, we define the output block, which contains the quantifier prefix and the
matrix:

define block Phi := Q, F;

3.3 Writing definitions in the language
We now offer the formal version of two of the formula families defined in Chapter 2:
the QParity formulae (Definition 2.3) and the Chromatic Formulae (Definition 2.4).
The formal versions of the rest of the families presented in the previous chapter can
be found in Appendix B.

3.3.1 QParity Formulae

Let us recall the definition of the QParity circuits defined in the previous chapter.
For some natural number n ≥ 2, the circuit has the form

QParityn = ∃x1 . . . ∃xn∀z : ρn

where ρn = tn ⊕ z, and tn is obtained by defining some auxiliary t-circuits:
t2 = x1 ⊕ x2 and for i ∈ {3, . . . , n}, ti = ti−1 ⊕ xi.

We start the formal definition by giving a name to the formula family and setting
its format, circuit-prenex:

name: QParity;
format: circuit-prenex;

Then we declare parameters, followed by their type as well as possible constraints
(in this case, n ≥ 2). Using them, we can then declare the variables. Variables xi are
denoted x(i) and the range of indices must be specified.

parameters: {
n : int, ‘n >= 2‘;

}

variables: {
x(i) where i in 1..n;
z;

}

We now declare the blocks. We start with the ones used for quantifiers. All
the x-variables are existentially quantified, followed by the variable z universally
quantified.

28

3.3. Writing definitions in the language

define blocks {
X := x(i);

} where i in 1..n;

define block Z := z;
define block Q := X, Z;

block X quantified with E;
block Z quantified with A;

In the same section, we define the blocks used to build the matrix of the formula.
Here we use once again the feature of groupings: a set of blocks grouped under the
same name, so that they can all be simultaneously operated or quantified.

define block T(2) := x(1), x(2);
define blocks grouped in T {

T(i) := T(s), x(i);
} where i in 3..n, s = ‘i-1‘;

define block Rho := T(n), z;
block T(2) operated with XOR;
all blocks in T operated with XOR;
block Rho operated with XOR;

Finally we define the output block, Phi, and specify that that is the entrance to
the whole formula i.e. Phi is QParityn:

define block Phi := Q, Rho;
output block: Phi;

3.3.2 Chromatic Formulae

In the previous chapter, the Chromatic Formulae were one of the most interesting
examples we offered because the formulae had an intuitive, clear meaning, and
because they had one parameter that was not a natural number: a graph.

When faced with the challenge of writing that definition in our formal language,
we must address the second of the features needed mentioned at the beginning: our
language should have support for basic integer arithmetic, but, additionally, we
would also like to encode graphs, for formula families like the Chromatic Formulae.
And not only graphs, e.g. if we encode a two-player game, we might need to encode
the state of the board. These non-scalar objects may take the form of lists, matrices
or other data structures. However, introducing native support for lists, matrices,
sets and other data structures as well as operations on them would depart us from
the goal of designing a language for formula family definitions. After all, we would
be investing the time in defining an almost full-blown programming language just so
that we can manipulate some simple expressions.

We tackle this issue embedding an external programming language into our
system. In particular, Python, as this is the language we have used to build the
tool we present in the next chapter. Thanks to embedded Python, definitions can
contain any built-in Python data type and we can operate on them using any existing
built-in Python function. This means that, for example, all evaluation of arithmetic
expressions is left in the hands of the Python interpreter. For this to work, any
complex expression will need to be enclosed in backticks. For example, if we want to
indicate that the index i ranges from 1 to n, it will be enough to say where i in

29

3. The Formal Language

1..n, but if, for instance, i ranges from 1 to n3 + 7, that expression will need to be
enclosed in backticks: where i in 1..‘n**3 + 7‘.

Now that we know how to encode and manipulate other parameters, we can
give the formal definition of the Chromatic Formulae. Recall that they take two
parameters, a graph G = (V,E) and a number k ∈ N∗, and are of the form:

K(G, k) = ∃x1,1 . . . x1,k . . . xn,1 . . . xn,k∀y1,1 . . . y1,k−1 . . . yn,1 . . . yn,k−1 : Γ ∧∆

where

Γ =
∧

i∈[n]
(xi,1 ∨ · · · ∨ xi,k) ∧

∧
i∈[n]

j 6=j′∈[k]

(¬xi,j ∨ ¬xi,j′) ∧
∧

(i,i′)∈E
j∈[k]

(¬xi,j ∨ ¬xi′,j)

and

∆ =
∨

i∈[n]
(¬yi,1 ∧ · · · ∧ ¬yi,k−1) ∨

∨
i∈[n]

j 6=j′∈[k−1]

(yi,j ∧ yi,j′) ∨
∨

(i,i′)∈E
j∈[k−1]

(yi,j ∧ yi′,j)

The main new feature we showcase when encoding these formulae is that the
graph taken as a parameter is used to check whether a certain edge (i, j) is in the
graph, (i, j) ∈? E. For this purpose, we encode the graph as and adjacency matrix,
edges, and then the condition can be written as ‘edges[i-1][j-1] == 1‘ (using
Python syntax). Note that, for the sake of readability, we also introduce an extra
parameter, n, denoting the number of nodes of the graph.

We start by defining parameters and variables, as usual:

name: Chromatic formulae;
format: circuit-prenex;

parameters: {
n : int, ‘n >= 1‘;
edges : list, ‘len(edges) == n‘;
k : int, ‘k >= 1‘;

}

variables: {
x(i, j) where i in 1..n, j in 1..k;
y(i, j) where i in 1..n, j in 1..‘k-1‘;

}

Regarding the blocks, we only show a small example where we use the embedded
Python syntax. For instance, when defining the clauses∧

(i,j)∈E
l∈[k]

(¬xi,j ∨ ¬xi′,j)

in the subformula Γ, we add the following block definition:

30

3.4. Expressive power and potential use cases

define blocks grouped in SubGamma3 {
SG3(i, j, l) := -x(i, l), -x(j, l);

} where i in 1..n, j in 1..n, ‘edges[i-1][j-1] == 1‘, l in 1..k;
...

define block Gamma3 := all blocks in SubGamma3;
...

all blocks in SubGamma3 operated with OR;
block Gamma3 operated with AND;

The complete encoding of the Chromatic Formulae can be found in Appendix
B.4.

3.4 Expressive power and potential use cases
A relevant question before we close the chapter is whether the language presented
above can declare all possible families of formulae. Though this is a complicated
matter and we have not explored it in depth, we could advance that this language
should in principle be able to express virtually any set of QBF, given the fact that
having access to Python makes the language Turing-complete. Therefore, our formal
language should be able to express —albeit inconveniently— the definition of any
computable family of QBF.

Note the emphasis on computable: there are formula families that exist as
mathematical objects but cannot be effectively built, so to say, and therefore cannot
be expressed in this language. Think of certain circuit families in non-uniform Boolean
circuit complexity classes, like P/poly. In P/poly we have languages like UHALT: the
set of unary strings encoding a pair (M,x) of a Turing machine and an input x such
that M halts on input x (see [5]). The formula family UHALT = {UHn : n ∈ N∗}
exists, in that the Boolean circuit UHn can be defined as the conjunction of the input
bits if the input of length n halts, and as some trivially unsatisfiable circuit when
the input of length n does not halt. This language is in P/poly and it constitutes a
formula family, but it cannot be computed and therefore it cannot be expressed in
the language.

Amongst the things the language can express are non-prenex families. This is
because the space in which blocks are defined is the same for both quantifier blocks
and gate blocks. Therefore, they can be combined to put quantifiers before a gate,
and so on. Nevertheless, as we will later discuss when talking about the computer
tool implementing the language, this is more of an experimental feature, given the
lack of non-prenex solvers currently available.

It is also interesting to come back now to a question mentioned in the introduction
of this work. As we said, tools like SOGrounder are capable of modelling formula
families and some of the potential uses may seem to overlap with the capabilities of
the formal language we just introduced. Although arguably many problems can be
modelled in both languages, SOGrounder cannot handle parameters that control
alternation patterns of quantifiers. For instance, SOGrounder could be used to
model the game of chess on a traditional 8× 8 board, yet it cannot model the general

31

3. The Formal Language

case for n× n boards, used to show that generalized chess in PSPACE-complete
(see [33]). If we want to play actual chess, on a normal board only, SOGrounder
will be more convenient; if, on the other hand, we are interested in the hardness of
chess and the length of proofs in QBF solvers as the size of the board increases, we
will need to use a formalism like this one.

Finally, we could venture some other potential uses for this language. So far
we have only encoded either simple formula families or existing sets defined in the
literature. Though this is the main goal of this language, its capabilities should
encourage users to play and easily define more inventive sets of hard-to-prove formula
families. For instance, with some small modifications, it would be possible to make
the language accept user-defined Python objects and packages. If one modelled a
Turing machine and using that encoded the Cook-Levin formulae, something like
the Sipser-Gács formulae could be expressed in this language, the set of QBF used
in the Sipser-Gács theorem showing the class BPP is contained in the Polynomial
Hierarchy (BPP ⊆ Σp

2 ∩Πp
2 ⊆ PH, see [5]).

Another potential use, via Python’s built-in functions for random number gen-
eration, is the encoding of existing models for random generation of hard-to-solve
QBF, like the original Chen-Interian model (see [15]) and later modifications and
extensions like the one proposed by Amendola et al. in [3].

32

Chapter 4

A Case Study: Encoding
Geography in QBF

In the previous chapter, the Chromatic Formulae were presented, a QBF encoding of
the Chromatic Number problem, and we offered a formal version of them into our
language. One may argue, however, that the Chromatic Formulae were a somewhat
forced example: after all, that is a DP-complete problem that can be solved using
the conjunction of two propositional formulae: one expressing that the graph is
k-colorable and another one expressing it is not k − 1-colorable. Therefore QBF
solvers may incur unnecessary overheads in performance, while a SAT solver would
do just fine.

In this chapter, we turn our attention to a proper PSPACE problem — at least
as long as NP 6= PSPACE. Amongst popular PSPACE problems are those of
two-player games, where we try to decide whether one of the players (the existential
player) has a forced win over its opponent (the universal player). Some popular
examples of endgame decision problems based on board games are derived from
Chess, Checkers or Go. We present a simpler game that is, nevertheless, as hard as
the previous ones: Geography. In fact, Geography has shown to be a versatile
problem, as it has been used to prove the PSPACE-completeness of endgame board
games such as Checkers (see [19]).

We start the chapter by presenting the rules of the game in Section 4.1. In Section
4.2 we offer a generalized version of Geography on a graph, known as Generalized
Geography, which is a proper PSPACE-complete problem. Besides, we discuss a
particular case in which the problem can be solved in polynomial time, an interesting
feature to test the performance of QBF solvers and proof complexity. Finally, in
Section 4.3, we provide an encoding of k-Generalized Geography into QBF as
well as its formal version into our language.

4.1 The Geography game

In its most basic form, Geography is a game played between two players, which
we call player P and player Q, who try to test each other’s geography knowledge by

33

4. A Case Study: Encoding Geography in QBF

shouting the name of capital cities from all around the world.
Player P starts the game saying the name of the capital city of the country they

are in. Let’s say P is in Belgium and starts by saying Brussels. Now the second
player, Q, must choose a city starting with the last letter of the city said by P . In
this case, a world capital starting with s. Player Q may choose Seoul, starting with
s, and now player P will have to find a city name starting with l.

Player P has now several options, such as La Valeta or Luxembourg, but in real
life, no cities may spring to mind — after all, this is a game to test your geography
knowledge! Thus, if P cannot come up with a city, they lose the game.

Presented like this it may seem like a frivolous game where players shout city
names until nothing else comes to mind. We can make Geography more of a
strategic endeavour by considering that the two players have access at any moment
to a full list with the valid city names they are playing over, such as the list with all
197 capital cities in the world. Now the game is no longer about testing your memory,
but about finding a perfect strategy: a sequence of cities such that no matter what
the other player answers, they will eventually end up in a position where all the
possible cities have already been used.

For a complete example, imagine again we are playing over world capitals, starting
in Belgium. Then what follows is a valid game were player Q loses: no capital city
in the world starts with z other then Zagreb, and that one has already been used by
P in move 7.

1. P : Brussels (Belgium)

2. Q: Sofia (Bulgaria)

3. P : Amsterdam (Netherlands)

4. Q: Minsk (Belarus)

5. P : Kabul (Afghanistan)

6. Q: La Paz (Bolivia)

7. P : Zagreb (Croatia)

8. Q: Berlin (Germany)

9. P : Nuuk (Greeenland)

10. Q: Kiev (Ukraine)

11. P : Vaduz (Liechtenstein)

This time P won Q in 11 moves, and we could say that P ’s strategy of securing
Zagreb was clearly a master move. However, how particular is this strategy? Would
it always work? After all, in their first move, Q had a long list of cities to choose
from starting with s: Sarajevo, Seoul, Singapore, Stockholm... Likely, for one of
those choices they might have been able to avoid ending up stuck in Vaduz.

Player P is thus forced to think even more generally: they want to anticipate
every possible move player Q could make. They want to make sure that after each of
Q’s moves, they can find a city that will eventually make them win. In other words,
P wants to make sure he has a forced win. Therefore, the question we may ask is
the following: given a list of cities and a starting city c0, whatever Q chooses in each
turn, is there always a possible choice for player P such that Q will eventually be
stuck?

34

4.2. Generalized Geography

1

2

3

4

5

6

Figure 4.1: Example of a graph to play to Generalized Geography.

The PSPACE-like nature of the Geography should now become apparent,
in that it very much resembles the quantifier alternation of a quantified Boolean
formula: for every move Q makes, there exists a move for P , such that for every
other move Q may take afterwards... Q always ends up in a position where they
have no way out.

4.2 Generalized Geography

Under the conjecture NP 6= PSPACE, if a forced win like the one described above
exists, there may not always be short certificates to prove it. Nevertheless, for many
reasonable instances we could still ask if P has a forced win by sending an encoding
of this problem to a QBF solver. In order to ease this task for computer tools we
present a more abstract version of Geography based on graphs: Generalized
Geography and k-Generalized Geography.

Instead of a list of cities, we will play over a graph G = (V,E), where we can
intuitively think of the nodes as the former cities of Geography. Whenever a city
starts with the last letter of another city in the graph, those nodes will be adjacent
and there will be a directed edge between them. That is, (Brussels,Seoul) ∈ E but
(Seoul,Brussels) /∈ E. Additionally, we establish a starting node s, which we consider
to be player P ’s initial move.

An example of Generalized Geography can be built using the graph in Figure
4.1, where we assume 1 to be the initial node. Q will be forced to choose 2 and P will
only be able to choose 3. Now Q may choose either 4, 5 or 6 (note that (3, 1) ∈ E
but node 1 has already been used, so that is not a possible move). In the first two
cases P wins because they can then move to 6 and lock Q in there. However, there
is one scenario in which P loses: if Q goes from 3 to 6, player P is left without
movements. We would conclude that P does not have a forced win in this graph.

We can define the game more formally as follows.

Definition 4.1 (Generalized Geography). Let G = (V,E) be a graph a let
s ∈ V be a node in that graph. Consider the following game between two players

35

4. A Case Study: Encoding Geography in QBF

P and Q: P starts the game by choosing s and then the two players take turns,
each time choosing a node that extends the current path starting from s, without
repeating nodes. We call this game Generalized Geography.

We say that player P has a winning strategy in Generalized Geography over
G starting at s if when P starts the game at s, they can can always choose nodes
in such a way that eventually Q is unable to extend the path. If, in particular, P
has a winning strategy in k movements, we say they have a winning strategy in
k-Generalized Geography.

We denote by GenGeo the set of all pairs (G, s) of a graph and a node such
that player P has a winning strategy in G starting at s. In particular, we denote
by k-GenGeo the pairs of graphs and nodes such that P has a winning strategy in
k-Generalized Geography.

Generalized Geography no longer depends on cities but on graphs and,
as such, we can study its complexity as the size of G and k increases. Under
this formulation, Generalized Geography is PSPACE-complete (see [30] for
a complete proof showing that TQBF can be polynomial-time reduced to GenGeo)
and thus it will be hard to decide whether P has a forced win over Q for big enough
graphs. The case with the 197 different cities will be, arguably, a difficult one.

Note that if we fix the number of moves k, then deciding whether a player has
a winning strategy in k-Generalized Geography is Σp

k-complete, as the QBF
encoding the decision would be an instance of ΣkSAT.

4.2.1 The particular case of acyclic graphs

Interestingly enough, there exists a particular scenario in which deciding whether P
has a forced win is not that hard: whenever the graph is acyclic, we can compute
the decision in polynomial time. The existence of such a polynomial-time algorithm
is suggested in [27]. We now briefly sketch such a procedure.

Algorithm 4.1 (Generalized Geography on a DAG). Let G = (V,E) be a
directed acyclic graph, let s ∈ V be the starting point and n = |V |. We want to
decide if P has a forced win over player Q when playing over G.

1. Since G is acyclic, we can compute a topological ordering of the graph through
any classical variation of depth-first search methods (see [17, 27]). This can
be done in time O(|V | + |E|) ⊆ O(n2). Let v1, . . . , vn be such a topological
ordering of the vertices and suppose node s, the starting point, corresponds to
node vs in the ordering.

2. Declare Boolean variables w1, . . . , wn. The intended meaning of these variables
is that wi = 1 if and only if the player that is about to move has a forced win
starting in vi.

3. Since the last node has no outgoing edges, any player starting in vn will lose,
so we can safely set wn = 0.

36

4.3. The Geography Formulae

4. We compute the value of the remaining wi through dynamic programming (see
[17, 27]) in a descending order. Starting at wn−1, we set wi = 1 if and only if
there exists j > i such that (vi, vj) ∈ E and wj = 0, i.e. if the player that is
about to move can move to vj and we already know that the other player will
have a forced loss starting at vj . Each one of the wi values can be computed
in at most O(n) time and thus the complete table can be obtained in O(n2).

5. Player P has a forced win starting at s if and only if ws = 1.

The previous algorithm can compute whether P has a forced win over Q in time
O(n2). Besides, it can be easily modified by adding a step counter such that we
can also decide if P has a forced win specifically in k moves. Clearly, the previous
procedure only works for acyclic graphs, for otherwise getting the topological ordering
would be impossible.

The fact that the particular case of directed acyclic graphs can be computed in
polynomial time is a very interesting property in the context of proof complexity
and empirical research of QBF solvers. Once we encode Generalized Geography
into QBF, we will be able to check whether the formulae obtained for acyclic graphs
are solved significantly faster than those for very similar but cyclic graphs.

Going into the more theoretical domain of proof complexity, we may ask whether
certain proof systems always prove in polynomial size the Generalized Geography
formulae for acyclic graphs — or whether, perhaps, proof systems cannot see beyond
the formula representation and cannot exploit this property. Recall that under
the NP 6= PSPACE conjecture, for every proof system for TQBF there will exist
some QBF with exponentially long certificates. Analogously, since Generalized
Geography is PSPACE-complete, we expect that some instances will also have
exponentially long certificates, yet there might exist proof systems where the case
for acyclic graphs can be efficiently proven.

4.3 The Geography Formulae

We are now ready to encode the k-Generalized Geography game into QBF
formulae. Again, we are interested in deciding whether the existential player P has
a forced win over the universal player Q on a graph G = (V,E), where we denote
n = |V |, starting at s ∈ V in k moves (not counting the initial predefined move to s
which we refer to as “move 0”).

4.3.1 Encoding the game

We start by defining the Boolean variables used in the formulae. We have variables

pi,m, where i ∈ {1, . . . , n} and m ∈ {0, 2, 4, . . . , k}
qi,m, where i ∈ {1, . . . , n} and m ∈ {1, 3, 5, . . . , k − 1}
sm, where m ∈ {1, 3, . . . , k − 1, k + 1}

37

4. A Case Study: Encoding Geography in QBF

Semantically, pi,m is true if and only if player P chooses node i at move m. The
q-variables have the same meaning, but they are only defined for odd move numbers,
as P can only move in even moves and Q in the odd ones. This already gives a
condition for the parameters of the formulae: we will require that k mod 2 = 0.
Besides, sm is intended to be true if and only if the game is already stuck for player
Q at time m or move m is the first time Q gets stuck.

The quantifier prefix of the formulae (we are building a prenex circuit) is straight-
forward: there exists a movement for P at time 0, such that there exists a stuckness
state after that move, such that for all choices Q makes at move 1, there exists a
move for P at time 2... and so on. We denote this prefix Pn,k:

∃p1,0 . . . pn,0∃s1∀q1,1 . . . qn,1 . . . ∀q1,k−1 . . . qn,k−1∃p1,k . . . pn,k∃sk+1

We are left with the task of modelling the problem constraints into propositional
logic. Arguably, not all of the possible arrangements of variables will be valid, so we
first need to encode what the validity of a move is. In particular, we want to avoid
the possibility of either of the players trivially winning by choosing “not to play”,
selecting invalid assignments.

Now, what are the constraints we need to impose? We have four validity
constraints, to which we give some names: P must choose s as initial movement
(initial condition); at each move only one node must be chosen (uniqueness of choice);
every node is only used at most once (no overlapping); and if two nodes are chosen
consecutively, then there must exist an edge between them (connectedness).

Besides, we have some conditions for what it means to become stuck. This is the
stuckness condition: if P chooses i at time m, Q has no way out, i.e. Q is stuck at
node i and loses the game.

We now give the encoding of each one of these constraints.

1. Validity

a) Initial condition
P ’s initial choice (move 0) is node s. We add a single clause with variable
ps,0.

b) Uniqueness of choice
At each move m, only one node must be chosen. We add subformulae
Up(m) and Uq(m), each one making sure that at each move m, one and
only one node is chosen.

Up(m) =
∧

i∈[n]
(pi,m ↔

∧
j∈[n]
j 6=i

¬pj,m)

Uq(m) =
∧

i∈[n]
(qi,m ↔

∧
j∈[n]
j 6=i

¬qj,m)

38

4.3. The Geography Formulae

c) No overlapping
Every node can be used at most once in the game by each player. Thefore,
if a player chooses node i at time m, it must not have been chosen before.

Op(m) =
∧

i∈[n]
(pi,m → (

∧
m′∈{0,2,...,m−2}

¬pi,m′ ∧
∧

m′∈{1,3,...,m−1}
¬qi,m′))

Oq(m) =
∧

i∈[n]
(qi,m → (

∧
m′∈{0,2,...,m−1}

¬pi,m′ ∧
∧

m′∈{1,3,...,m−2}
¬qi,m′))

d) Connectedness
If P chooses node i at step m, then it must be adjacent to the node chosen
by Q at m− 1. We add two subformulae C imposing the connectedness
condition:

Cp(m) =
∧

i∈[n]
(qi,m−1 →

∨
(i,j)∈E

pj,m)

Cq(m) =
∧

i∈[n]
(pi,m−1 →

∨
(i,j)∈E

qj,m)

Now, let Vp(0) = ps,0 ∧ Up(0) and for m ∈ {2, 4, . . . , k},

Vp(m) = Up(m) ∧ Op(m) ∧ Cp(m)

Analogously, for m ∈ {1, 3, . . . , k − 1}, we define

Vq(m) = Uq(m) ∧ Oq(m) ∧ Cq(m)

We have that Vp(m) and Vq(m) are true if and only if player P (resp. Q) makes
a valid assignment to their variables at move m.
Besides, for m ∈ {1, 3, . . . , k − 1, k + 1} we denote

V<(m) =
∧

m′∈{0,2,...,m−1}
Vp(m′) ∧

∧
m′∈{1,3,...,m−2}

Vq(m′)

such that V<(m) is true if and only if all the movements up to but not including
m were valid.

2. Stuckness
To express the stuckness we first encode a formula S(m) expressing that Q is
stuck for the first time at time m. That is, if P chose some node i at time m−1,
all the adjacent nodes are already used before. For m ∈ {1, 3, . . . , k− 1, k+ 1},

39

4. A Case Study: Encoding Geography in QBF

S(m) =
∨

i∈[n]
(pi,m−1 ∧

∧
(i,j)∈E

(
∨

m′∈{0,2,...,m−3}
pj,m′ ∨

∨
m′∈{1,3,...,m−2}

qj,m′))

Besides, we set s1 ↔ S(1) and for every m ∈ {3, 5, . . . , k − 1, k + 1},

sm ↔ (sm−2 ∨ S(m))

Now, winning the game is expressed as follows:

1. P makes a valid move at move 0.

2. At every odd move m, either:

a) Q is already stuck or gets stuck for the first time.
b) If Q makes a valid move, then P makes a valid move at m+ 1.

3. The game is stuck at move k + 1.

For every odd movement we denote byM(m) the implication of making a valid
move:

M(m) = (Vq(m) ∧ V<(m))→ Vp(m+ 1)
For movement k − 1 we also impose that after making the move Q gets stuck:

M(k − 1) = (Vq(k − 1) ∧ V<(k − 1))→ (Vp(k) ∧ S(k + 1))
We express this in the following formula W:

W(G, k, s) = Vp(0) ∧ (s1 ∨M(1))
∧ (s3 ∨M(3))
...

∧ (sk−1 ∨M(k − 1))
∧ (s1 ↔ S(1))
∧

∧
m∈{3,5,...,k+1}

(sm ↔ (sm−1 ∨ S(m)))

∧ sk+1

Definition 4.2 (Geography Formulae). Let G = (V,E) be a graph, n = |V |, s ∈ V
a node in the graph and let k ∈ N such that k mod 2 = 0. The Geography Formulae
are the family of formulae containing QBF of the form

G(G, k) = Pn,k :W(G, k, s)
where Pn,k and W(G, k, s) are the quantifier prefix and matrix defined in the

construction above.

40

4.3. The Geography Formulae

4.3.2 Formal version of the Geography Formulae

As usual, we begin by giving a name to the family, determining its format and
declaring variables and parameters. This is rather straightforward.

name: Geography Formulae;
format: circuit-prenex;

parameters: {
n : int, ‘n >= 1‘;
edges : list, ‘len(edges) == n‘;
k : int, ‘k >= 0‘, ‘k % 2 == 0‘;
s : int, ‘s in range(1, n+1)‘;

}

variables: {
p(i, m) where i in 1..n, m in 0..k;
q(i, m) where i in 1..n, m in 1..‘k-1‘;
s(m) where m in 1..‘k+1‘;

}

Next we define the quantifier prefix. Recall the prefix we are defining is:

∃p1,0 . . . pn,0∃s1∀q1,1 . . . qn,1 . . . ∀q1,k−1 . . . qn,k−1∃p1,k . . . pn,k∃sk+1

In the formal version we split the prefix in the following blocks:

Qp(m) := ∃p1,m, . . . ,∃pn,m∃sm+1

Qq(m) := ∀q1,m, . . . ,∀qn,m

Then we combine them as follows:

blocks: {

define blocks grouped in Qp {
Qp(m) := p(i, m), s(m1);

} where m in 0..k, ‘m % 2 == 0‘, i in 1..n, m1 = ‘m + 1‘;

define blocks grouped in Qq {
Qq(m) := q(i, m);

} where m in 1..‘k-1‘, ‘m % 2 != 0‘, i in 1..n;

all blocks in Qp quantified with E;
all blocks in Qq quantified with A;

41

4. A Case Study: Encoding Geography in QBF

define blocks grouped in Qm {
Q(m) := Qp(m), Qq(m1);

} where m in 0..‘k-2‘, ‘m % 2 == 0‘, m1 = ‘m+1‘;

define block Q := all blocks in Qm, Qp(k);

Now we build the blocks encoding the validity conditions, which amounts to
splitting up every formula into blocks. The process is lengthy but does not present
any new difficulties so we do not go into the details. The full code can be found in
Appendix B.7.

Using this encoding and the tool presented next chapter, a wide variety of
instances could be produced to test on different QBF solvers. In particular, it would
be possible to test if solvers see the difference between cyclic and acyclic graphs.
Unfortunately, this further research is out of the scope of this thesis and must remain
as future work (see Chapter 6).

42

Chapter 5

The Tool: Defining and
Building Formulae with QBDef

In Chapter 3, we designed and described a formal language to write QBF family
definitions. This formal language lets us define all the formula families seen so far
(such as the ones defined in Chapter 2) and many more. The ultimate goal, however,
is not to write definitions but to be able to generate actual instances of these formulae
to evaluate the performance of QBF solvers and shed light on proof complexity
related issues.

In this chapter, we introduce QBDef, a computer tool based on the formal
language we just described that can read definitions and output instances of the
given family in formats accepted by current QBF solvers (QCIR and QDIMACS).

In Section 5.1 we present the tool and its most prominent features, as well as
some very general technical details about its construction. In Section 5.2 we discuss
how we go from the parse tree to an internal representation of the formulae, as well
as what this internal representation looks like. Besides, we give some bounds on
the complexity of generating the formulae and describe the possible output formats
and their limitations. Finally, we discuss the evaluation of the tool: Section 5.3
discusses how to run the tool and what simple tests we have carried out to check the
correctness of the outputs, while Section 5.4 uses QBDef to get instances of the Chen
Formula of Type 2 and give a taste of what type of proof complexity research can be
carried out with the tool, empirically showing an exponential separation between
circuit-based and CNF-based solvers.

5.1 A brief introduction to QBDef
QBDef is a tool designed to easily write parameterized QBF family definitions and
get instances in formats accepted by QBF solvers.

Consider, for instance, the QParity formulae, defined in Chapter 2 (see Section
2.3.3) and later formally written in our language in Chapter 3 (see Section 3.3.1).
The QParity formulae have a single natural number n as a parameter. QBDef takes
as input a file with the formal definition written in our language and a specific value

43

5. The Tool: Defining and Building Formulae with QBDef

for the parameter n and outputs a file (in either QDIMACS or QCIR) containing
the QParityn formula.

This tool is a command-line script written in Python 3. The definitions of
formula families are parsed based on the formal grammar described in Chapter 3
(see Appendix A for the full grammar) using the implementation of the LALR(1)
parsing algorithm offered by the Lark parsing library1 for Python. Once the formula
is parsed, an internal representation of the QBF is built into a Python object. This
abstract internal representation can then be easily converted to QCIR, QDIMACS
or even (experimentally) to Non-Prenex-QCIR.

Because the tool is written in Python, the embedded language features described
in Chapter 3 are handled directly by the Python interpreter, giving the user access
to its built-in data structures and functions, including floating-point arithmetic,
Booleans, lists, sets, dictionaries, mathematical functions and much more.

5.2 Representing and building the formulae
Once a definition file is parsed by QBDef, we convert it into a Python object to
manipulate it internally. We now describe what this internal representation looks
like.

5.2.1 Representation

We represent formulae in Python QBF objects. Objects of this class contain eight
fields2 storing the information given in the definition plus the values. These are:

• name (string)
Name of the formula family.

• format (enmumerated type Format)
A value of the enumerated type Format that can take the values CNF, prenex-circuit
and non-prenex-circuit.

• values (dictionary)
A dictionary relating the names of parameters to its values.

• parameters (list)
A list o Parameter objects (a Parameter object contains the name of the
parameter, its assigned values, the constraints it must satisfy and a list of
Booleans indicating the evaluation results of these constraints).

1See https://lark-parser.readthedocs.io/en/latest/: “LALR(1) is a very efficient parsing
algorithm, incredibly fast and requiring very little memory, capable of parsing most programming
languages (e.g. Python and Java). Lark comes with an efficient implementation that outperforms
every other parsing library for Python (including PLY) and extends the traditional YACC-based
architecture with a contextual lexer, which automatically provides feedback from the parser to the
lexer”. Its code is available at https://github.com/lark-parser/lark.

2The implementation contains some additional fields for technical purposes. We exclude them
from the discussion to keep it more readable and clear.

44

https://lark-parser.readthedocs.io/en/latest/
https://github.com/lark-parser/lark

5.2. Representing and building the formulae

• variables (dictionary)
A dictionary relating variable names as strings to numerical identifiers.

• blocks (dictionary)
A dictionary relating block names as strings to numerical identifiers.

• block_contents (dictionary)
A dictionary relating block identifiers to Block objects; a Block object contains
its name, a list of the bricks it is composed of (—possibly negative— numerical
identifiers of other blocks or variables), and an attribute (an enumerated type
for existential/universal quantifiers and the OR/AND/XOR operators).

• groupings (dictionary)
A dictionary relating grouping names (strings) to a list of numerical identifiers
of blocks included in that grouping.

• output (integer)
Numerical identifier of the output block.

As we can see, in terms of data structures, we define some auxiliary enumerated
types and Python classes. The enumerated types are used to encode formula
format choices (CNF, prenex-circuit, non-prenex-circuit) or attributes (exists,
forall, AND, OR, XOR), while we have two other Python classes to encode parameters
(containing their name, constraints, and values) and blocks (containing name, bricks
and attribute).

The data structures used are quite straightforward and intuitive. Except for those
enumerated types and auxiliary classes, we use built-in Python types only (integers,
lists and dictionaries). Dictionaries are used to easily access variable identifiers,
block identifiers, contents and groupings. This is because we often have to go from
the definition given by the user (with string identifiers) to the numerical identifiers
employed in the internal representation. Thus, being able to quickly get the identifiers
and its contents is vital to generate the formulae efficiently.

To have an intuitive idea of what formulae look like in this internal representation,
we take a look at the QParity formulae for n = 3.

Example 5.1 (Iternal representation of QParity3). The Python QBF object of
QParity3 and its fields would look more or less as follows, where <...> repre-
sents objects and {...} represents dictionaries.

• name (string)
name = "QParity Formulae"

• format (enmumerated type Format)
format = circuit_PRENEX

• values (dictionary)
values = {’n’ : 3}

45

5. The Tool: Defining and Building Formulae with QBDef

• parameters (list)
parameters = [<’n’, ’int’, 3, [’n >= 2’], [True]>]

• variables (dictionary)

variables = {’x(1)’ : 1,
’x(2)’ : 2,
’x(3)’ : 3,
’z’ : 4}

• blocks (dictionary)

blocks = {’X()’ : 5,
’Z()’ : 6,
’Q()’ : 7,
’T(2)’ : 8,
’T(3)’ : 9,
’Ro1()’ : 10,
’Ro2()’ : 11,
’F()’ : 12,
’Phi()’ : 13}

• block_contents (dictionary)

block_contents = {6 : <’X()’, [1, 2, 3], exists>,
7 : <’Z()’, [4], forall>,
8 : <’Q()’, [5,6], None>,
9 : <’T(2)’, [1, 2], XOR>,
10 : <’T(3)’, [8, 3], XOR>,
12 : <’Ro1()’, [4, 9], OR>,
13 : <’Ro2()’, [-4, -9], OR>,
14 : <’F()’, [10, 11], AND>,
15 : <’Phi()’, [7, 12], None>}

• groupings (dictionary)
groupings = {’T’ : [8, 9], ’Ro’ : [10, 11]}

• output (integer)
output := 13;

46

5.2. Representing and building the formulae

5.2.2 Building the formulae

The internal representation we chose is not particularly complicated and therefore
going from the parse tree of the definition to the actual object is not very difficult.
For instance, setting the name and format of the family or declaring the variables
is quite straightforward. We have setter methods in our QBF class that receive the
strings parsed from the file and take care of them, filling the appropriate fields
or creating the necessary identifiers for variables. Similarly, the information on
parameters coming from the parse tree is sent to a setter method that creates a
Parameter object and then adds it to the list of parameters, making sure that the
values and expressions are evaluated using Python’s interpreter (Python’s eval(...)
and exec(...) handle this).

The main difficulty in building the formulae is in adding the blocks to the QBF
object. The definition given as input contains one or more of the following blocks
definitions,

define blocks {
B1(. . .) := x1,1(. . .), . . ., x1,b1 (. . .);

...
Bk(. . .) := xk,1(. . .), . . ., xk,bk

(. . .);
} where i1 in r1..r′1, . . ., ic in rc..r′c;

where we may have up to k line-defintions, each one containing up to bi bricks
inside (we denote by b the largest bi), and up to c indices i1, . . . , ic ranging over
intervals [r1, r

′
1]N, . . . , [rc, r

′
c]N respectively.

We denote by R the set containing all the index tuples defined by the where
clause:

R ⊆ [r1, r
′
1]N × · · · × [rc, r

′
c]N

Note that we write R as the subset of that Cartesian product because amongst
the conditions imposed in the where clause there might be Boolean conditions that
could cancel out certain tuples.

Algorithm 1 presents the pseudocode for the procedure that processes a block
definition like the one above. It corresponds to the notion of depth-first unfolding
that we referred to as fix-and-expand in Chapter 3 when describing the language
features (see Example 3.2).

Looking at Algorithm 1 and using the notation we just defined, we can give some
bounds on the complexity of that procedure and therefore a bound on the general
complexity of generating the formulae, as the rest of the formula-building steps are
straightforward and do not add any significant overheads.

Clearly the algorithm has four nested loops and the operations inside are per-
formed (almost) in constant time, so the algorithm processes a define block col-
lection of line-definitions like the one presented before in time O(k · |R| · b · |R|).
Because in practice we only have a fixed and small number of line-blocks and bricks
(in the examples we saw so far we never have more than two or three line-definitions

47

5. The Tool: Defining and Building Formulae with QBDef

Algorithm 1 Procedure adding a collection of line-blocks to the QBF object.
for def := 1 to k do

for all (i1, . . . , ic) ∈ R do
if Bdef(i1, . . . , ic) is not defined then

Assign a new identifier to this block.
for brick := 1 to bdef do

for all (j1, . . . , jc) ∈ R do
Add the brick xdef,brick to the block. When substituting the
indices in the brick use first the values i1, . . . , ic if those appeared
amongst the indices of Bdef, otherwise use j1, . . . , jc.

end for
end for
Save the block with the bricks that have been added.

end if
end for

end for

and three or four bricks) while R will grow in size as the values of the parameters
increase, we can safely state that k, b � |R| and therefore the time-complexity of
Algorithm 1 is O(|R|2).

Let us look at an example.
Example 5.2 (Fix-and-expand procedure). Take the following block definition, where
we assume n and m to be the parameters of the family:

define blocks {
A := x(i), y(i);
B(i) := x(i), y(j);

} where i in 1..n, j in 1..m;

In this case we have k = 2 line-definitions and b = 2 bricks per line-definition.
The set R of valued index-tuples is the whole Cartesian product, R = [n] × [m].
The algorithm goes through each line-definition and for each of them it iterates first
over R, then over the two bricks and for each brick it iterates over R again. The
complexity is O(|R|2) = O(n2 ·m2).

5.2.3 Giving values to the parameters

So far, we have only talked about definitions, assuming the parameters had some
values. Before we go on, we say something about assigning values to parameters.
QBDef receives as input two files: a file containing a definition and a file containing
values for the parameters. Each value is written in a new line, preceded by the word
value:.

For example, in the Chromatic Formulae (see Sections 2.3.4, 3.3.2 and Appendix
B.4), we had three parameters: n, edges and k. A possible value assignment written
in our syntax could be:

48

5.2. Representing and building the formulae

value: n = 4;
value: edges = ‘[[0, 1, 1, 1],

[1, 0, 0, 1],
[1, 0, 0, 0],
[1, 1, 0, 0]]‘;

value: k = 3;

5.2.4 Output formats

Once we have the internal representation of the formula, we can decide to print it in a
certain format that can be used by QBF solvers. This process is quite straightforward
too, mainly because we only output QCIR formulae and then perform conversions
on that format.

QCIR

This is the most basic way of getting an output in QBDef. Using our formula
representation, it is quite easy to traverse the object as a Boolean circuit. We know
which block denotes the output of the formula, so we need to follow the trace starting
there, exploring the blocks in a breath-first manner. During this traversal we write
down the blocks we find and their attributes as the gates of a Boolean circuit using
the QCIR syntax. When we finish, we have a string with a QCIR representation of
the formula.

QDIMACS

The QCIR format is already enough for many users and, in fact, is seems like the
circuit representation makes solvers more efficient. However, QBDef supports outputs
in CNF via some third-party conversion tools. We opt for external conversion tools
because although our representation is good in that it is intuitive to understand the
structure of the represented QBF and traverse it as a circuit, it is rather cumbersome
to manipulate it.

To get the QDIMACS output, first we obtain the QCIR version of the formula
as described above. Then we put this into William Klieber’s qcir-to-qdimacs
conversion tool3, which outputs a CNF version of the formula written in QDIMACS.

Non-Prenex-QCIR

As we mentioned in Chapters 2 and 3, the latest version of the QCIR format
defines language features to write non-prenex formulae. This is, however, rather
unsatisfactory, as writing a non-prenex formula using these mechanisms behaves as
using a completely different language. So much so that, at the moment of writing
this work, solvers do not fully support this format.

Because our formal language can build non-prenex formulae, we have added
the possibility to output Non-Prenex-QCIR, but this should be considered an

3See https://www.wklieber.com/ghostq/qcir-converter.html.

49

https://www.wklieber.com/ghostq/qcir-converter.html

5. The Tool: Defining and Building Formulae with QBDef

experimental feature, because, after all, there are no solvers against which to test
the correctness of these outputs. In terms of conversion, the process is analogous to
the one used in the conversion to QCIR.

As a last remark, we shall say something about writing non-prenex formulae in
our language. We do so by adding pairs of blocks of the form Q, G, where Q is a
quantifier-block and G is a gate block. We present a simple example, but we will not
come back to this issue.
Example 5.3 (Writing non-prenex formulae). We will write in our formal language
the non-prenex QBF

Φ = ∀z : (∃x : (x⊕ z)) ∧ (z ⊕ (∃x : (x⊕ z)))

We have the following gates: G1 := x⊕ z, G2 := ∃x : (x⊕ z), G3 := z ⊕ ∃x :
(x⊕ z), G4 := ∃x : (x⊕ z)) ∧ (z ⊕ (∃x : (x⊕ z)) and G1 := Φ.

In our language, this is written as follows:

name: Non-Prenex Example;
format: circuit-nonprenex;

variables: {
x;
z;

}

blocks: {

define block G1 := x, z;
block G1 operated with XOR;

define block XQ := x;
block XQ quantified with E;

define block ZQ := z;
block ZQ quantified with A;

define block G2 := XQ, G1;
define block G3 := z, G2;
block G3 operated with XOR;

define block G4 := G2, G3;
block G4 operated with AND;

define block G5 := ZQ, G4;

}

output block: G5;

Using QBDef, the output in Non-Prenex-QCIR looks like this:

#QCIR-G14
output(9)
3 = xor(1, 2)
7 = xor(2, 6)

50

5.3. Evaluation of QBDef

6 = exists(1; 3)
8 = and(6, 7)
9 = forall(2; 8)

5.3 Evaluation of QBDef
QBDef is a command-line Python script. More information on installing and using
the tool can be found in Appendix C. The appendix also contains the link to the
complete source code of the application.

When running the tool on a terminal, we get four possible outputs: a formula in
QCIR, a formula in QDIMACS, a formula in Non-Prenex-QCIR or a readable
version of the internal representation, like the one presented earlier in this chapter.

Of course, how do we know the output formulae are correct? In other words, how
do we know they correspond to the actual definitions given as input?

Though we have not used any formal verification techniques for correctness, we
have performed three types of tests to ensure that the tool behaves as expected. The
tests rely on the formal versions of the seven formula families defined in Chapter 2.
The three types of tests are these:

1. Small correctness tests
It has been manually checked that small instances correspond to what we can
build by hand.

2. General UNSAT tests
The Chen Formulae of Type 1 and 2, the QParity formulae, the Janota
formulae and the KBKF formulae are always unsatisfiable, ragardless of the
values of the parameters. We have tested that the outputs for a wide range of
parameter values are unsatisfiable both in QCIR and QDIMACS by feeding
these files to the QuAbS4 and DepQBF5 solvers.

3. SAT-UNSAT switching tests
The Chromatic Formulae have a very nice property: their satisfiability depends
on the parameters. We check that the satisfiability and unsatisfiability results
switch correctly when changing the values of the parameters.

We now explain these tests in a bit more detail.

5.3.1 Small correctness tests

As a rudimentary and first step towards correctness, we have checked that small
instances of the formulae correspond to what could be expected by checking that
they match the ones we could build on pen an paper. This has been performed for

4https://github.com/ltentrup/quabs
5https://lonsing.github.io/depqbf/

51

https://github.com/ltentrup/quabs
https://lonsing.github.io/depqbf/

5. The Tool: Defining and Building Formulae with QBDef

all small families of formulae: QParity, Chen Type 2, Janota and KBKF (the rest
of the families produce very big outputs even for small values of the parameters).

As an example, we can show the output of the QParity formulae for n = 3 in
QCIR as given by QBDef. Looking at it and at the internal representation provided
earlier (see Example 5.1), it is straightforward to see that it corresponds to what we
expect from Definition 2.3:

#QCIR -G14
exists (1, 2, 3) → ∃x1∃x2∃x3
forall (4) → ∀z
output (12) → QParityn = ∃x1∃x2∃x3∀z : ρ
8 = xor (1, 2) → t2 = x1 ⊕ x2
9 = xor (8, 3) → t3 = t2 ⊕ x3
11 = or(-4, -9) → ¬z ∨ ¬t3
10 = or(4, 9) → z ∨ t3
12 = and (10, 11) → ρ = (¬z ∨ ¬t3) ∧ (z ∨ t3)

For all the cases covered, the tool behaved as desired.

5.3.2 General UNSAT tests

Most of the formula families covered so far are always unsatisfiable. This is the case
of the Chen Formulae of Type 1 and 2, the QParity formulae, the Janota formulae
and the KBKF.

All of these families depend on a single natural value as parameter, and we have
checked that the outputs produced by QBDef were evaluated unsatisfiable both in
QCIR (with the circuit-based solver QuAbS) and in CNF (with the CNF solver
DepQBF) for values {5, 10, 30, 50, 100, 150, 200, 300, 400, 500, 750, 1000}. In
all situations, the formulae produced by QBDef were unsatisfiable in both of those
solvers.

5.3.3 SAT-UNSAT switching tests

The general UNSAT tests just described do not confirm much, given that the
produced outputs might be unsatisfiable for the wrong reasons. Fortunately, we
count with a formula family where the satisfiability switches depending on the values
of the parameters: the Chromatic Formulae.

The formula K(G, k) is true if and only if k is the chromatic number of G (and
obviously G has only one such number). In the tests, we have used complete graphs
of varying sizes (1, 5, 10, 20 and 40 nodes), as well as some smaller non-complete
graphs. For the complete graphs, the chromatic number coincides with the number
of nodes, so we can check if the formulas produced by the system are satisfiable for
that value of k and unsatisfiable elsewhere.

We have performed this test both in QCIR (with the circuit-based solver QuAbS)
and in CNF (with the CNF solver DepQBF). In all situations, the formulae produced
by QBDef were satisfiable only for the correct values of k.

52

5.4. QBDef in action: testing the Chen Type 2 formulae

5.4 QBDef in action: testing the Chen Type 2 formulae
Across this work, we have motivated the existence of QBDef arguing that it would
serve as a unified tool to develop empirical research in proof complexity. Although
conducting that research is of course out of the scope of this work, we now present
a small example of how the tool could be used to get significant proof complexity
insights.

Take the Chen Formulae of Type 2, defined in Section 2.3.2 (Definition 2.2),
where we saw how to build them as circuits using the auxiliary µ-circuits. That
definition was then encoded into our formalism (see Appendix B.2) and we can now
use QBDef to generate instances of them.

The Chen Formulae of Type 2 were used in [14] to show that a seemingly very
powerful system called Relaxing QU-Resolution had an exponential lower bound
caused by this family. But is this exponential lower bound translated to the actual
solvers? What about solvers built on top of a completely different proof system?

In particular, me may ask the following two questions:

1. How long does it take for solvers to find the unsatisfiability of Type 2 formulae?
That is, how hard are they for them?

2. Is there a significant difference in running time between solvers designed for
circuits and solvers designed for CNF?

The second question is not a trivial one: the Chen Formulae of Type 2 are built as
circuits and their transformation into CNF will require auxiliary variables that will
be existentially quantified at the end of the prefix. As we mentioned in Chapter 2, it
has been theoretically proven that depending on the proof system this transformation
can provoke an exponential blowup of the proof length (see [9]). Is this the case of
the Chen Formulae of Type 2 for some CNF-based solvers?

We start by running QBDef to obtain instances of the formulae for values
n = 1, 100, 200, 300, . . . , 1000. Once we have them, we try them on two different
circuit-based solvers: QuAbS and CQESTO6. We have performed these tests on an
Intel Core i5-8250U processor with 8 GB of RAM. This is a rather limited machine
for performing large scale tests, and thus the experimental results gathered are a
bit limited, but they are enough to get a taste of how this tool could be used by
researchers.

Table 5.1 shows the average running time in seconds after three tests on each of
those solvers (it can be appreciated that for QuAbS we have data up to n = 1000,
but CQESTO was significantly slower and we had to stop at 600). These results are
displayed on a graph on Figure 5.1.

Clearly, QuAbS outperforms CQESTO by far. Can we get an estimate of the
complexity of these formulae for QuAbS? Figure 5.2 displays polynomial regressions
for degrees 1 to 4 done with values from n = 1 to n = 600 and then extended up to
1000 to see how they fit.

6http://sat.inesc-id.pt/~mikolas/sw/cqesto/

53

http://sat.inesc-id.pt/~mikolas/sw/cqesto/

5. The Tool: Defining and Building Formulae with QBDef

Figure 5.1: Chen Type 2 circuits’ running times on QuAbS and CQESTO.

Figure 5.2: Polynomial regressions up to n = 600 on the QuAbS running times.

54

5.4. QBDef in action: testing the Chen Type 2 formulae

n QuAbS CQESTO
1 0.05061 0.12992

100 1.39349 3.48476
200 6.45269 23.03770
300 18.52676 137.92092
400 40.95977 362.74532
500 76.81426 1564.41455
600 131.73557 4153.90999
700 206.60374 -
800 316.54247 -
900 480.91833 -
1000 619.57376 -

Table 5.1: Average running time after three tests in seconds of the Chen Formulae
of Type 2 on the QuAbS and CQESTO circuit-based solvers.

The linear and quadratic functions are easily discarded, as they are not very
accurate. The cubic and the fourth degree ones are both close, but when we compare
the latters’ director coefficient we find that it is too small (10−7 versus 10−5). Thus,
we could conclude that the running times on QuAbS seem to grow at a cubic rate.
Of course, the reader should note that deriving asymptotic growth rates based on
empirical data is not precise at all. Too many factors interfere in the results and,
besides, a very high-degree polynomial will always fit almost perfectly to any curve,
yet that does not mean that running times follow that trend. Therefore, we must
look for a balance between not too low director coefficients in the polynomials plus a
quite accurate match with the data. That is why we discard the linear and quadratic
regressions (too inaccurate) and we also discard the fourth-degree one (too low
director coefficient). And yet, we should not consider this a proof that QuAbS is
running in time Θ(n3). However, this does let us say that despite the exponential
lower bound proven for Relaxing QU-Resolution, when switching to a solver based
on a different proof system, we can get very reasonable running times.

Let us now turn our attention to the second question: is there a significant
difference in running time between solvers designed for circuits and solvers designed
for CNF?

To answer this we try to perform a similar test on two CNF-based QBF solvers:
DepQBF and CAQE7. Surprisingly, we will not get very far. In Table 5.2 and Figure
5.3 we can appreciate that running times are too high even for very small sizes. We
cannot perform bigger tests.

As we see, it gets out of hand very quickly. When plotting the data, we see how an
exponential curve fits neatly. For CAQE this curve is approximately f(n) = 1.8538n−
259.0903, while for DepQBF it goes up a bit higher up to f(n) = 1.9016n − 393.3636,
almost a perfect match with a exponential curve of base 2. This clear exponential
trend empirically confirms the results proven by Beyersdorf et al. in [9]: these

7https://github.com/ltentrup/caqe

55

https://github.com/ltentrup/caqe

5. The Tool: Defining and Building Formulae with QBDef

n CAQE depQBF
1 0.10295 0.03602
2 0.04303 0.02145
3 0.04304 0.02372
4 0.04890 0.02330
5 0.05341 0.02648
6 0.08515 0.03009
7 0.22742 0.04562
8 0.62194 0.12410
9 1.87319 0.48458
10 7.42670 2.09502
11 31.11183 9.75327
12 108.41917 48.84733
13 355.90740 266.93340
14 1541.80189 1539.74230
15 6360.79237 9288.23431

Table 5.2: Chen Type 2 CNF formulae running times in seconds on CAQE and
DepQBF.

Figure 5.3: Average running time after three tests in seconds of the Chen Formulae
of Type 2 on the DepQBF and CAQE CNF-based solvers.

CNF-based solvers cannot exploit certain patterns that are hidden in the Tseitin
transformation.

We conclude the chapter by saying that QBDef helped greatly in this task:
formula generation and format conversion was completely handled by the tool and
we could focus on the data, the trends and the results. This is how the tool could be
used in empirical research for proof complexity.

56

Chapter 6

Conclusion

In this work, we aimed at studying formula families in the QBF domain and ease
their generation into popular computer formats through automated tools.

This goal has been achieved with a formal language in which to write formula
family definitions and the implementation of QBDef, a computer tool capable of
reading these definitions and outputting files with instances written in QCIR or
QDIMACS.

We now summarise the results presented in this thesis.

Summary of the main results

In Chapter 2, we presented the concept of formula families and discussed it at length,
providing examples of how these are used in the proof complexity literature to
show exponential lower bounds, separations and other proof-theoretical results. We
gave a short yet representative selection of formula families in the QBF domain,
which covered a range of different formats, definitions styles and parameter data
types. These were the Chen Formulae of Type 1 and 2 (Definitions 2.1 and 2.2),
the QParity circuits (Definition 2.3), the Chromatic Formulae (Definition 2.4), the
Janota Formulae (Definition 2.5) and the KBKF formulae (Definition 2.6).

Based on those definitions, in Chapter 3 we designed a formal language to capture
them and potentially any other formula family. We explained its syntax, features
and capabilities, and discussed some potential uses. We include the grammar of this
language in Appendix A and the formal versions of all the formula families from
Chapter 2 in Appendix B.

In Chapter 4 we looked at a PSPACE-complete two-player game: Generalized
Geography, and we modelled it into QBF to then encode it into our language. This
served to show how two-player games can be used to build interesting benchmarks
for QBF solvers. The case of Generalized Geography is particularly attractive
because of the way in which directed acyclic graphs behave. For these graphs, we
provided an algorithm than can compute the existence of a winning strategy in
polynomial time. This makes the game very attractive in that it would be interesting
to see if QBF solvers can tell the difference between the formulae corresponding to

57

6. Conclusion

an acyclic graph and the formulae corresponding to very similar yet cyclic graphs.
Thanks to the encoding given in the language, generating the instances would be
fairly easy.

Finally, in Chapter 5 we presented the main contribution of this work: QBDef,
a tool parsing the language presented in Chapter 2 that can read formula family
definitions and generate instances of them in the QCIR and QDIMACS formats. We
briefly discussed the most interesting aspects of the implementation and described the
evaluation and testing performed on the tool. Besides, we offered an example of real
use based on the Chen Type 2 formulae, generating instances of them with QBDef
to then try on four different solvers (DepQBF, CAQE, QuAbS and CQESTO). In
particular, we showed how QBDef helped in getting certain insights on the complexity
of this formulae, empirically pointing to an exponential separation between solvers
depending on the format.

Final remarks and future work

We can safely conclude that this work achieved its main goal of providing a tool
that could ease formula generation based on family definitions in the QBF domain.
Given the interest in the tool showed by different people working in the field, we
believe that this will be a useful addition to the toolkit of more empirically-oriented
proof complexity theorists.

Naturally, this work pointed at many interesting lines of work that could be
performed with QBDef. Besides, there exists a number of features the tool is still
missing and certain lines of research that would be interesting to follow based on the
work developed so far. We group these lines of future work in three main categories.

Additions to the language These include new operators and a more convenient
support for non-prenex formula definitions.

• New operators. Currently the tool only allows conjunction, disjunction and
exclusive disjunction as attributes for the blocks. The language would become
a lot more convenient if implication, double implication, generalized XOR and
other operators were included.

• More support for non-prenex formulae. Because of the way in which quantifier
blocks and gate blocks are defined in the same space in the language, non-
prenex formulae can be defined in our formalism. However, this is sometimes
inconvenient and additional language constructs might ease this. Of course,
this would need to go in hand with support of Non-Prenex-QCIR in the
solvers, which will likely take some time.

New features for QBDef These include support for additional formats, better
conversion tools, support for third-party Python packages, new testing techniques
based on certificates and more detailed validity checking, as well as a more flexible

58

implementation of the fix-and-expand procedure for better support of recursive
nesting of blocks.

• Support for additional formats. Although QCIR and QDIMACS are the most
popular format at the moment, other formalisms also exist. In particular, the
DQDIMACS formats allows non-linear quantifier prefixes to write dependency
quantified Boolean formulae (DQBF). Support for this would imply adding
both language features and implementation of conversion tools to this new
format.

• More powerful conversion tools. The QBF community is currently lacking
strong and general conversion tools between formats. Although many solvers
implement such conversion procedures as part of their code, they do not make
them available as standalone applications. Developing these same features over
and over again makes research slow and tedious. In particular, the main need is
a consistent tool for QCIR-to-QDIMACS conversion, more efficient than the
one developed by William Klieber and used in QBDef. Besides, development
of such tools should go in hand with the theoretical research into the optimal
placement of existential quantifiers at the end of prefixes in the conversion
process (see next category).

• Support for third-party Python packages. With its built-in data types and
functions, the embedded Python features of QBDef already make for an ex-
tremely powerful tool. However, even more could be done if we allowed external
packages to be imported. This way, users could define their own data structures
and functions and make some definitions easier.

• Additional testing. Given the scope of this thesis, the testing performed on
the tool is limited. Although it is enough to convince us that the generated
formulae correspond to the definitions in all formula families we covered, more
testing would be desirable. Of course, once the tool is made available to
the community, we expect to receive comments from users finding potential
problems on formula families containing features we could not test. On the
other hand, even with the formula families we have, more consistent testing
could be carried out looking at certificates. Although not all solvers output
certificates, some of them do, and this would be enough to check if the reasons
for the unsatisfiability of formulae correspond to the definitions or not.

• A more flexible implementation of fix-and-expand. In Algorithm 1 we presented
the procedure of fix-and-expand by which block definitions are unfolded and
then saved into the internal representation. Some modifications could be made
to the overall implementation to ideally make the running time less than
quadratic in the size of |R|. Besides, because of the way in which blocks are
added, some intricate recursive definitions might present problems. Certain
adjustments to the procedure would be needed to make recursive nesting of
blocks more convenient.

59

6. Conclusion

Research that could be conducted using QBDef This includes testing the
Generalized Geography formulae, studying the separation provoked by normali-
sation techniques as well as improvements to conversion tools to avoid this.

• Further study on Generalized Geography. As we discussed in Chapter
4, the Generalized Geography formulae present a very nice property on
acylic graphs that makes this problem an intersting one to test on solvers.
Unfortuntaly, that research had to be left out of this thesis.

• Research on the optimal placement of auxiliary variables in the quantifier. As
pointed out in [9], normalisation techniques when converting from circuits
to CNF can provoke and exponential blowup in the proof lenghts in certain
systems. We empirically observed this for the Chen Formulae of Type 2
generated with QBDef in Section 5.4. Currently, it is an open question what
the optimal placement of existentially quantified auxiliary variables in the
prefix should be when performing these conversions. It would be interesting
to use QBDef to shed some light on this issue, by combining the tool with a
versatile converter to see what placements present better results in different
solvers.

• Random generation of formulae. Of course, we expect this tool will be used for
generation of many different formula family ideas. In particular, it would be
interesting to encode existing random generation models like the Chen-Interian
model (see [15]) into our language, as well as some of the ideas we pointed at
in Section 3.4.

60

Appendices

61

Appendix A

Formal grammar

The formal grammar of the language described in Chapter 3 and upon which QBDef
is built, written in the Lark syntax for EBNF grammars.

start: value* formula_family ? -> return_formula

value : "value :" NAME "=" expression ";" -> handle_value

formula_family : name format parameters ? variables
blocks output_block

name: "name :" FAMILY_NAME ";" -> set_name

format : " format :" FORMAT ";" -> set_format

parameters : " parameters :" "{" parameter_declaration + "}"

parameter_declaration : NAME ":" PARAM_TYPE
("," expression)* ";" ->

add_parameter

variables : " variables :" "{" variable_declaration + "}"

variable_declaration : NAME ("(" indices ")"
(" where" index_range

("," index_range)*)?)? ";"
-> add_variable

indices : INDEX ("," INDEX)*

index_range : indices "in" (expression | INDEX | NAME)
".." (expression | INDEX | NAME)

63

A. Formal grammar

blocks : " blocks :" "{" block_definition (block_definition
| operator_declaration
| quantifier_declaration)+ "}"

block_definition : " define block" single_block_def
-> add_blocks

| " define blocks " grouping ?
"{" single_block_def + "}" conditions ?
";" -> add_blocks

single_block_def : BLOCK_NAME ("(" indices ")")? ":="
block_body ";"

block_body : brick ("," brick)*

brick: /all blocks in/ BLOCK_NAME
| NEGATION ? BLOCK_NAME ("(" indices ")")?
| NEGATION ? NAME ("(" indices ")")?

grouping : " grouped in" BLOCK_NAME

conditions : "where" condition ("," condition)*

condition : index_range | assignment | other_condition

assignment : INDEX "=" expression

other_condition : expression

quantifier_declaration : "block" BLOCK_NAME
("(" indices ")")
" quantified with" QUANTIFIER ";"

-> add_attributes
| " blocks " BLOCK_NAME

("(" indices ")")? (","
BLOCK_NAME

("(" indices ")")?)+ " quantified
with"

QUANTIFIER ";"
-> add_attributes

| "all blocks in" BLOCK_NAME
" quantified with" QUANTIFIER ";"

-> add_attribute_to_grouping

64

operator_declaration : "block" BLOCK_NAME
("(" indices ")")?
" operated with" OPERATOR ";"

-> add_attributes
| " blocks " BLOCK_NAME ("(" indices

")")?
("," BLOCK_NAME ("(" indices ")")

?)+
" operated with" OPERATOR ";"

-> add_attributes
| "all blocks in" BLOCK_NAME "

operated with"
OPERATOR ";"

-> add_attribute_to_grouping

output_block : " output block :" BLOCK_NAME
("(" indices ")")? ";" ->

add_final_block

NAME : /(?! all blocks in)[a-z]([_?a-zA -Z0 -9]) */
FAMILY_NAME : /[^;]+/ // old version : /[a-zA -Z]([?_?a-zA

-Z0 -9]) *(?=;) /
FORMAT : "CNF" | "circuit - prenex " | "circuit - nonprenex "
PARAM_TYPE : "int" | "str" | "float" | "list" | "bool" |

"other" // the names used by Python
? expression : /[0 -9]+/ | "‘" /[^ ‘]+/ "‘" //| /[^ ‘ ,;\]]+/
INDEX : /[a-z][_?a-zA -Z0 -9]*/ | /[0 -9]+/
BLOCK_NAME : /[A-Z]([_?a-zA -Z0 -9]) */
NEGATION : "-"
QUANTIFIER : "E" | "A"
OPERATOR : "AND" | "OR" | "XOR"
COMMENT : /\/*((*[^\/]) |[^*]) **\//

% import common . NUMBER
% import common . WS_INLINE
% import common . NEWLINE
% ignore WS_INLINE
% ignore NEWLINE
% ignore COMMENT

65

Appendix B

Encodings of the formula
families

B.1 Chen Formulae of Type 1

1 name: Chen Type 1;
2 format : CNF;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 }
7
8 variables : {
9 x1(i, j, k) where i in 0..n, j, k in 0..1;
10 x2(i, j, k) where i in 1..n, j, k in 0..1;
11 y(i) where i in 1..n;
12 }
13
14
15 blocks : {
16
17 /* ==== blocks for quantifers ==== */
18
19 define blocks grouped in X1 {
20 X1(i) := x1(i, j, j);
21 } where i in 0..n, j, k in 0..1;
22
23 define blocks grouped in X2 {
24 X2(i) := x2(i, j, j);
25 } where i in 1..n, j, k in 0..1;
26
27 define blocks grouped in Y {

67

B. Encodings of the formula families

28 Y(i) := y(i);
29 } where i in 1.. n;
30
31 define blocks grouped in X2YX1 {
32 X2YX1(i) := X2(i), Y(i), X1(i);
33 } where i in 1..n;
34
35 define block Q := X1 (0) , all blocks in X2YX1;
36
37 all blocks in X1 quantified with E;
38 all blocks in X2 quantified with E;
39 all blocks in Y quantified with A;
40
41
42 /* ==== blocks for formula ==== */
43
44 define blocks grouped in B1 {
45 B1(j, k) := -x1(0, j, k);
46 } where j, k in 0..1;
47
48 define blocks {
49 B2 := x1(n, j, 0), x1(n, j, 1);
50 } where j in 0..1;
51
52 block B2 operated with OR;
53
54 define blocks grouped in H {
55 H(i, j) := -x2(i, 0, k), -x2(i, 1, l),
56 x1(s, j, 0), x1(s, j, 1);
57 } where i in 1..n, j, k, l in 0..1 , s = ‘i - 1‘;
58
59 all blocks in H operated with OR;
60
61 define blocks grouped in T {
62 T1(i) := -x1(i, 0, k), y(i), x2(i, 0, k);
63 T2(i) := -x1(i, 1, k), -y(i), x2(i, 1, k);
64 } where i in 1..n, k in 0..1;
65
66 all blocks in T operated with OR;
67
68 define block F := all blocks in B1 , B2 ,
69 all blocks in H, all blocks in T;
70
71 block F operated with AND;
72

68

B.2. Chen Formulae of Type 2

73 define block Phi := Q, F;
74 }
75
76 output block: Phi;

B.2 Chen Formulae of Type 2

1 name: Chen Type 2;
2 format : circuit - prenex ;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 }
7
8 variables : {
9 x(i) where i in 1..n;
10 y(i) where i in 1..n;
11 }
12
13
14 blocks : {
15
16 /* ==== blocks for quantifers ==== */
17
18 define blocks grouped in X {
19 X(i) := x(i);
20 } where i in 1.. n;
21
22 define blocks grouped in Y {
23 Y(i) := y(i);
24 } where i in 1.. n;
25
26 all blocks in X quantified with E;
27 all blocks in Y quantified with A;
28
29 define blocks grouped in Qi {
30 Q(i) := X(i), Y(i);
31 } where i in 1..n;
32
33 define block Q := all blocks in Qi;
34
35
36 /* ==== blocks for formula ==== */

69

B. Encodings of the formula families

37
38 define blocks grouped in Ones0 {
39 Ones (0, i) := -x(i), -y(i);
40 } where i in 1..n;
41
42 define blocks grouped in Ones1 {
43 Ones (1, i) := x(i), y(i);
44 } where i in 1..n;
45
46 define blocks grouped in Ones2 {
47 Ones (2, i) := x(i), y(i);
48 } where i in 1..n;
49
50 all blocks in Ones0 operated with AND;
51 all blocks in Ones1 operated with XOR;
52 all blocks in Ones2 operated with AND;
53
54 define blocks IsAndAdds {
55 IsAndAdds (i, p, a) := Mu(i, p), Ones(a, k);
56 } where i in 1..n, p, a in 0..2;
57
58 all blocks in IsAndAdds operated with AND;
59
60 define block Mu(0, 1) := Ones (0, 1);
61 define block Mu(1, 1) := Ones (1, 1);
62 define block Mu(2, 1) := Ones (2, 1);
63
64 define blocks grouped in Mu {
65 Mu(m, i) := IsAndAdds (k-1, p, a);
66 } where m in 0..2 , i in 2..n, p in 0..2 ,
67 a = ‘(m-p) % 3‘;
68
69 define blocks {
70 F := -Mu(s, n);
71 } where s = ‘n % 3‘;
72
73 define block Phi := Q, F;
74 }
75
76 output block: Phi;

B.3 QParity Formulae

70

B.3. QParity Formulae

1 name: QParity ;
2 format : circuit - prenex ;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 }
7
8 variables : {
9 x(i) where i in 1..n;
10 z;
11 }
12
13 blocks : {
14
15 /* === Blocks for quantifers === */
16
17 define blocks {
18 X := x(i);
19 } where i in 1..n;
20
21 define block Z := z;
22
23 define block Q := X, Z;
24
25 block X quantified with E;
26 block Z quantified with A;
27
28 /* === Blocks for matrix === */
29
30 define block T(2) := x(1) , x(2);
31 define blocks grouped in T {
32 T(i) := T(s), x(i);
33 } where i in 3..n, s = ‘i-1‘;
34
35 define block Rho := T(n), z;
36
37 block T(2) operated with XOR;
38 all blocks in T operated with XOR;
39 block Rho operated with XOR;
40
41 define block Phi := Q, Rho;
42 }
43
44 output block: Phi;

71

B. Encodings of the formula families

B.4 Chromatic Formulae

1 name: Chromatic Formulas ;
2 format : circuit - prenex ;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 edges : list , ‘len(edges) == n‘;
7 k : int , ‘k >= 1‘;
8 }
9
10 variables : {
11 x(i, j) where i in 1..n, j in 1..k;
12 y(i, j) where i in 1..n, j in 1..‘k-1‘;
13 }
14
15 blocks : {
16
17 /* === blocks for quantifers === */
18
19 define blocks grouped in X {
20 X(i) := x(i, j);
21 } where i in 1..n, j in 1..k;
22
23 define blocks grouped in Y {
24 Y(i) := y(i, j);
25 } where i in 1..n, j in 1..‘k-1‘;
26
27 define block Q := all blocks in X,
28 all blocks in Y;
29
30 all blocks in X quantified with E;
31 all blocks in Y quantified with A;
32
33 /* ==== blocks for matrix ==== */
34
35 define blocks grouped in AllColored {
36 Colored (i) := x(i, j);
37 } where i in 1..n, j in 1..k;
38
39 define blocks grouped in NotColored {
40 NotColored (i) := -y(i, j);
41 } where i in 1..n, j in 1..‘k-1‘;
42

72

B.4. Chromatic Formulae

43 define block Gamma1 := all blocks in AllColored ;
44
45 define block Delta1 := all blocks in NotColored ;
46
47 define blocks grouped in SubGamma2 {
48 SG2(i, j, l) := -x(i, j), -x(i, l);
49 } where i in 1..n, j in 1..k,
50 l in 1..k, ‘j != l‘;
51
52 define blocks grouped in SubDelta2 {
53 SD2(i, j, l) := y(i, j), y(i, l);
54 } where i in 1..n, j in 1..‘k-1‘,
55 l in 1..‘k-1‘, ‘j != l‘;
56
57 define block Gamma2 := all blocks in SubGamma2 ;
58
59 define block Delta2 := all blocks in SubDelta2 ;
60
61 define blocks grouped in SubGamma3 {
62 SG3(i, j, l) := -x(i, l), -x(j, l);
63 } where i in 1..n, j in 1..n,
64 ‘edges[i -1][j -1] == 1‘, l in 1..k;
65
66 define blocks grouped in SubDelta3 {
67 SD3(i, j, l) := y(i, l), y(j, l);
68 } where i in 1..n, j in 1..n,
69 ‘edges[i -1][j -1] == 1‘, l in 1..‘k-1‘;
70
71 define block Gamma3 := all blocks in SubGamma3 ;
72
73 define block Delta3 := all blocks in SubDelta3 ;
74
75 define block Gamma := Gamma1 , Gamma2 , Gamma3 ;
76
77 define block Delta := Delta1 , Delta2 , Delta3 ;
78
79 define block F := Gamma , Delta;
80
81 all blocks in AllColored operated with OR;
82 all blocks in NotColored operated with AND;
83
84 all blocks in SubGamma2 operated with OR;
85 all blocks in SubDelta2 operated with AND;
86
87 all blocks in SubGamma3 operated with OR;

73

B. Encodings of the formula families

88 all blocks in SubDelta3 operated with AND;
89
90 blocks Gamma1 , Gamma2 , Gamma3 operated with AND;
91 block Gamma operated with AND;
92
93 blocks Delta1 , Delta2 , Delta3 operated with OR;
94 block Delta operated with OR;
95
96 block F operated with AND;
97
98 /* define the output block */
99 define block Phi := Q, F;

100 }
101
102 output block: Phi;

B.5 Janota Formulae

1 name: Janota Formulae ;
2 format : CNF;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 }
7
8 variables : {
9 x(i, j) where i, j in 1..n;
10 a(i) where i in 1..n;
11 b(i) where i in 1..n;
12 z;
13 }
14
15 blocks : {
16
17 /* === blocks for quantifers === */
18
19 define blocks {
20 X := x(i, j);
21 } where i, j in 1..n;
22
23 define block Z := z;
24
25 define blocks {

74

B.6. KBKF Formulae

26 L := a(i), b(i);
27 } where i in 1..n;
28
29
30 define block Q := X, Z, L;
31
32 block X quantified with E;
33 block Z quantified with A;
34 block L quantified with E;
35
36 /* ==== blocks for matrix ==== */
37
38 define blocks grouped in B_grp {
39 B1(i, j) := x(i, j), z, a(i);
40 B2(i, j) := -x(i, j), -z, b(i);
41 } where i, j in 1..n;
42
43 define blocks grouped in Or_grp {
44 A := -a(i);
45 B := -b(i);
46 } where i in 1..n;
47
48
49 define block F := all blocks in B_grp , all blocks in

Or_grp ;
50 all blocks in Or_grp operated with OR;
51 all blocks in B_grp operated with OR;
52
53 block F operated with AND;
54
55 /* define the output block */
56 define block Phi := Q, F;
57
58 }
59
60 output block: Phi;

B.6 KBKF Formulae

1 name: FAST KBKF;
2 format : CNF;
3
4 parameters : {

75

B. Encodings of the formula families

5 t : int , ‘t >= 1‘;
6 }
7
8 variables : {
9 x(i) where i in 1..t;
10
11 y(0);
12 y(i, j) where i in 1..t, j in 0..1;
13 y(i) where i in ‘t+1‘..‘t+t‘;
14 }
15
16
17 blocks : {
18
19 /* ==== blocks for quantifers ==== */
20
21 define blocks grouped in X {
22 X(i) := x(i);
23 } where i in 1..t;
24
25 define block Y(0) := y(0);
26
27 define blocks grouped in Y {
28 Y(i) := y(i, 0), y(i, 1);
29 } where i in 1..t;
30
31 define blocks {
32 YRest := y(j);
33 } where j in ‘t+1‘..‘t+t‘;
34
35 define blocks grouped in Pairs {
36 Pair(i) := Y(i), X(i);
37 } where i in 1..t;
38
39 define block Q := Y(0) , all blocks in Pairs , YRest;
40
41 block Y(0) quantified with E;
42 all blocks in X quantified with A;
43 all blocks in Y quantified with E;
44 block YRest quantified with E;
45
46 /* ==== blocks for formula ==== */
47
48 define block CMinus := -y(0);
49

76

B.7. Geography Formulae

50 define block C(0) := y(0) , -y(1, 0), -y(1 ,1);
51
52 define blocks grouped in C1 {
53 C(i, j) := y(i, j), x(i),
54 -y(s1 , 0), -y(s1 , 1);
55 } where i in 1..‘t-1‘, j in 0..1 , s1 = ‘i+1‘;
56
57 define blocks grouped in C2 {
58 C(t, j) := y(t, j), x(t), -y(k);
59 } where j in 0..1 , k in ‘t+1‘..‘t+t‘;
60
61
62 define blocks grouped in C3 {
63 C(s2 , 0) := x(l), y(s2);
64 C(s2 , 1) := -x(l), y(s2);
65 } where l in 1..t, s2 = ‘t+l‘;
66
67 define block F := CMinus , C(0) ,
68 all blocks in C1 ,
69 all blocks in C2 ,
70 all blocks in C3;
71
72 block C(0) operated with OR;
73 all blocks in C1 operated with OR;
74 all blocks in C2 operated with OR;
75 all blocks in C3 operated with OR;
76
77 block F operated with AND;
78
79 define block Phi := Q, F;
80 }
81
82 output block: Phi;

B.7 Geography Formulae

1 name: Geography Formulae ;
2 format : circuit - prenex ;
3
4 parameters : {
5 n : int , ‘n >= 1‘;
6 edges : list , ‘len(edges) == n‘;
7 k : int , ‘k >= 0‘, ‘k % 2 == 0‘;

77

B. Encodings of the formula families

8 s : int , ‘s in range (1, n+1) ‘;
9 }
10
11 variables : {
12 p(i, m) where i in 1..n, m in 0..k;
13 q(i, m) where i in 1..n, m in 1..‘k-1‘;
14 s(m) where m in 1..‘k+1‘;
15 }
16
17 blocks : {
18
19 /* ==== Blocks for the quantifier === */
20
21 define blocks grouped in Qp {
22 Qp(m) := p(i, m), s(m1);
23 } where m in 0..k, ‘m % 2 == 0‘, i in 1..n, m1 = ‘m +

1‘;
24
25 define blocks grouped in Qq {
26 Qq(m) := q(i, m);
27 } where m in 1..‘k-1‘, ‘m % 2 != 0‘, i in 1..n;
28
29 all blocks in Qp quantified with E;
30 all blocks in Qq quantified with A;
31
32 define blocks grouped in Qm {
33 Q(m) := Qp(m), Qq(m1);
34 } where m in 0..‘k-2‘, ‘m % 2 == 0‘, m1 = ‘m+1‘;
35
36 define block Q := all blocks in Qm , Qp(k);
37
38 /* --*/
39
40
41
42
43
44 /* ==== Blocks for the matrix

=== */
45
46 /* === 1. Validity conditions

=== */
47
48 /* (a) Initial conditions (no need for blocks) */
49 /* --*/

78

B.7. Geography Formulae

50
51 /* (b) Uniqueness of choice */
52 /* --*/
53
54
55 /* --*/
56
57 define blocks grouped in NotChosenOtherP {
58 NotChosenOtherP (i, m) := -p(j, m);
59 } where i in 1..n, m in 0..k, ‘m % 2 == 0‘,
60 j in 1..n, ‘j != i‘;
61
62 all blocks in NotChosenOtherP operated with AND;
63
64 define blocks grouped in LeftImpP {
65 LeftImpP (i, m) := -p(i, m), NotChosenOtherP (i, m)

;
66 } where i in 1..n, m in 0..k, ‘m % 2 == 0‘;
67
68 define blocks grouped in RightImpP {
69 RightImpP (i, m) := -NotChosenOtherP (i, m), p(i, m

);
70 } where i in 1..n, m in 0..k, ‘m % 2 == 0‘;
71
72 all blocks in LeftImpP operated with OR;
73 all blocks in RightImpP operated with OR;
74
75 define blocks grouped in UniqueChoiceP {
76 UniqueChoiceP (i, m) := LeftImpP (i, m), RightImpP (

i, m);
77 } where i in 1..n, m in 0..k, ‘m % 2 == 0‘;
78
79 all blocks in UniqueChoiceP operated with AND;
80
81 define blocks grouped in Up {
82 Up(m) := UniqueChoiceP (i, m);
83 } where m in 0..k, ‘m % 2 == 0‘, i in 1..n;
84
85 all blocks in Up operated with AND;
86
87 /* --*/
88
89 define blocks grouped in NotChosenOtherQ {
90 NotChosenOtherQ (i, m) := -q(j, m);
91 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘,

79

B. Encodings of the formula families

92 j in 1..n, ‘j != i‘;
93
94 all blocks in NotChosenOtherQ operated with AND;
95
96 define blocks grouped in LeftImpQ {
97 LeftImpQ (i, m) := -q(i, m), NotChosenOtherQ (i, m)

;
98 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘;
99

100 define blocks grouped in RightImpQ {
101 RightImpQ (i, m) := -NotChosenOtherQ (i, m), q(i, m

);
102 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘;
103
104 all blocks in LeftImpQ operated with OR;
105 all blocks in RightImpQ operated with OR;
106
107 define blocks grouped in UniqueChoiceQ {
108 UniqueChoiceQ (i, m) := LeftImpQ (i, m), RightImpQ (

i, m);
109 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘;
110
111 all blocks in UniqueChoiceQ operated with AND;
112
113 define blocks grouped in Uq {
114 Uq(m) := UniqueChoiceQ (i, m);
115 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘;
116
117 all blocks in Uq operated with AND;
118
119 /* (c) No Overlapping */
120 /* --*/
121
122 /* --*/
123
124 define blocks grouped in NotUsedBeforeP_Op {
125 NotUsedBeforeP_Op (i, m) := -p(i, m1);
126 } where i in 1..n, m in 2..k, ‘m % 2 == 0‘, m1 in

0..‘m-2‘, ‘m1 % 2 == 0‘;
127
128 define blocks grouped in NotUsedBeforeQ_Op {
129 NotUsedBeforeQ_Op (i, m) := -q(i, m1);
130 } where i in 1..n, m in 2..k, ‘m % 2 == 0‘, m1 in

1..‘m-1‘, ‘m1 % 2 != 0‘;
131

80

B.7. Geography Formulae

132 all blocks in NotUsedBeforeP_Op operated with AND;
133 all blocks in NotUsedBeforeQ_Op operated with AND;
134
135 define blocks grouped in NotUsedBeforeP {
136 NotUsedBeforeP (i, m) := NotUsedBeforeP_Op (i, m),

NotUsedBeforeQ_Op (i, m);
137 } where i in 1..n, m in 2..k, ‘m % 2 == 0‘;
138
139 all blocks in NotUsedBeforeP operated with AND;
140
141 define blocks grouped in OverlapP {
142 OverlapP (i, m) := -p(i, m), NotUsedBeforeP (i, m);
143 } where i in 1..n, m in 2..k, ‘m % 2 == 0‘;
144
145 all blocks in OverlapP operated with OR;
146
147 define blocks grouped in Op {
148 Op(m) := OverlapP (i, m);
149 } where m in 2..k, ‘m % 2 == 0‘, i in 1..n;
150 all blocks in Op operated with AND;
151
152 /* --*/
153
154 define blocks grouped in NotUsedBeforeP_Oq {
155 NotUsedBeforeP_Oq (i, m) := -p(i, m1);
156 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘, m1 in

0..‘m-1‘, ‘m1 % 2 == 0‘;
157
158 define blocks grouped in NotUsedBeforeQ_Oq {
159 NotUsedBeforeQ_Oq (i, m) := -q(i, m1);
160 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘, m1 in

1..‘m-1‘, ‘m1 % 2 != 0‘;
161
162 all blocks in NotUsedBeforeP_Oq operated with AND;
163 all blocks in NotUsedBeforeQ_Oq operated with AND;
164
165 define blocks grouped in Special {
166 NotUsedBeforeQ (i, 1) := NotUsedBeforeP_Oq (i, 1);
167 } where i in 1..n;
168 all blocks in Special operated with AND;
169
170 define blocks grouped in NotUsedBeforeQ {
171 NotUsedBeforeQ (i, m) := NotUsedBeforeP_Oq (i, m),

NotUsedBeforeQ_Oq (i, m);
172 } where i in 1..n, m in 3..‘k-1‘, ‘m % 2 != 0‘;

81

B. Encodings of the formula families

173
174 all blocks in NotUsedBeforeQ operated with AND;
175
176 define blocks grouped in OverlapQ {
177 OverlapQ (i, m) := -q(i, m), NotUsedBeforeQ (i, m);
178 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘;
179
180 all blocks in OverlapQ operated with OR;
181
182 define blocks grouped in Oq {
183 Oq(m) := OverlapQ (i, m);
184 } where m in 1..‘k-1‘, ‘m % 2 != 0‘, i in 1..n;
185 all blocks in Oq operated with AND;
186
187
188 /* (d) Connectedness */
189 /* --*/
190
191 define blocks grouped in AdjacentP {
192 AdjacentP (i, m) := p(j, m);
193 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘,
194 m in 2..k, ‘m % 2 == 0‘;
195
196 define blocks grouped in AdjacentQ {
197 AdjacentQ (i, m) := q(j, m);
198 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘,
199 m in 1..‘k-1‘, ‘m % 2 != 0‘;
200
201 all blocks in AdjacentP operated with OR;
202 all blocks in AdjacentQ operated with OR;
203
204 define blocks grouped in ConnectedP {
205 ConnectedP (i, m) := -q(i, m0), AdjacentP (i, m);
206 } where i in 1..n, m in 2..k, ‘m % 2 == 0‘, m0 = ‘m

-1‘;
207
208 define blocks grouped in ConnectedQ {
209 ConnectedQ (i, m) := -p(i, m0), AdjacentQ (i, m);
210 } where i in 1..n, m in 1..‘k-1‘, ‘m % 2 != 0‘, m0 =

‘m-1‘;
211
212 all blocks in ConnectedP operated with OR;
213 all blocks in ConnectedQ operated with OR;
214
215 define blocks grouped in Cp {

82

B.7. Geography Formulae

216 Cp(m) := ConnectedP (i, m);
217 } where m in 2..k, ‘m % 2 == 0‘, i in 1..n;
218
219 define blocks grouped in Cq {
220 Cq(m) := ConnectedQ (i, m);
221 } where m in 1..‘k-1‘, ‘m % 2 != 0‘, i in 1..n;
222
223 all blocks in Cp operated with AND;
224 all blocks in Cq operated with AND;
225
226
227 /* === 2. Stuckness

===
*/

228
229 define blocks grouped in EdgeUsedP1 {
230 EdgeUsedP (i, j, 1) := p(j, 0);
231 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘;
232 all blocks in EdgeUsedP1 operated with OR;
233
234 define blocks grouped in EdgeUsedP {
235 EdgeUsedP (i, j, m) := p(j, m1);
236 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘,
237 m in 3..‘k+1‘, ‘m % 2 != 0‘,
238 m1 in 0..‘m-3‘, ‘m1 % 2 == 0‘;
239
240 all blocks in EdgeUsedP operated with OR;
241
242 define blocks grouped in EdgeUsedQ {
243 EdgeUsedQ (i, j, m) := q(j, m1);
244 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘,
245 m in 1..‘k+1‘, ‘m % 2 != 0‘,
246 m1 in 0..‘m-2‘, ‘m1 % 2 != 0‘;
247
248 all blocks in EdgeUsedQ operated with OR;
249
250 define blocks grouped in Special2 {
251 EdgeUsed (i, j, 1) := EdgeUsedP (i, j, 1);
252 } where i, j in 1..n, ‘edges[i -1][j -1] == 1‘;
253
254
255 define blocks grouped in EdgeUsed {
256 EdgeUsed (i, j, m) := EdgeUsedP (i, j, m),

EdgeUsedQ (i, j, m);
257 } where i in 1..n, j in 1..n, ‘edges[i -1][j -1] == 1‘,

83

B. Encodings of the formula families

258 m in 1..‘k+1‘, ‘m % 2 != 0‘;
259
260 all blocks in EdgeUsed operated with OR;
261
262 define blocks grouped in NoWayOutFrom {
263 NoWayOutFrom (i, m) := EdgeUsed (i, j, m);
264 } where i in 1..n, j in 1..n, ‘edges[i -1][j -1] == 1‘,

m in 1..‘k+1‘, ‘m % 2 != 0‘;
265 all blocks in NoWayOutFrom operated with AND;
266
267 define blocks grouped in StuckIn {
268 StuckIn (i, m) := p(i, m1), NoWayOutFrom (i, m);
269 } where i in 1..n, m in 1..‘k+1‘, ‘m % 2 != 0‘, m1 =

‘m-1‘;
270
271 all blocks in StuckIn operated with AND;
272
273 define blocks grouped in S {
274 S(m) := StuckIn (i, m);
275 } where m in 1..‘k+1‘, ‘m % 2 != 0‘, i in 1..n;
276
277 all blocks in S operated with OR;
278
279
280 /* === 3. Final blocks

==
*/

281
282
283 define block Vp (0) := p(s, 0), Up (0);
284 block Vp (0) operated with AND;
285
286 define blocks grouped in Vp {
287 Vp(m) := Up(m), Op(m), Cp(m);
288 } where m in 2..‘k‘, ‘m % 2 == 0‘;
289 all blocks in Vp operated with AND;
290
291 define blocks grouped in Vq {
292 Vq(m) := Uq(m), Oq(m), Cq(m);
293 } where m in 1..‘k-1‘, ‘m % 2 != 0‘;
294 all blocks in Vq operated with AND;
295
296 define blocks grouped in VpUpTo {
297 VpUpTo (m) := Vp(m1);

84

B.7. Geography Formulae

298 } where m in 1..‘k-1‘, ‘m % 2 != 0‘, m1 in 0..‘m -
1‘, ‘m1 % 2 == 0‘;

299
300 define blocks grouped in VqUpTo {
301 VqUpTo (m) := Vq(m1);
302 } where m in 2..‘k-1‘, ‘m % 2 != 0‘, m1 in 0..‘m -

2‘, ‘m1 % 2 != 0‘;
303
304 all blocks in VpUpTo operated with AND;
305 all blocks in VqUpTo operated with AND;
306
307 define block VUpTo (1) := VpUpTo (1);
308
309 define blocks grouped in VUpTo {
310 VUpTo(m) := VpUpTo (m), VqUpTo (m);
311 } where m in 3..‘k-1‘, ‘m % 2 != 0‘;
312
313 all blocks in VUpTo operated with AND;
314
315 define blocks grouped in ValidNow {
316 ValidNow (m):= Vq(m), VUpTo(m);
317 } where m in 1..‘k-1‘, ‘m % 2 != 0‘;
318
319 define blocks {
320 ValidAndStuck := Vp(k), S(k1);
321 } where k1 = ‘k + 1‘;
322 block ValidAndStuck operated with AND;
323
324 define blocks grouped in Mk1 {
325 M(k1) := -ValidNow (k1), ValidAndStuck ;
326 } where k1 = ‘k-1‘;
327 all blocks in Mk1 operated with OR;
328
329 define blocks grouped in M {
330 M(m) := -ValidNow (m), Vp(m1);
331 } where m in 1..‘k-3‘, ‘m % 2 != 0‘, m1 = ‘m + 1‘;
332 all blocks in M operated with OR;
333
334 define blocks grouped in StuckOrMove {
335 StuckOrMove (m) := s(m), M(m);
336 } where m in 1..‘k-1‘, ‘m % 2 != 0‘;
337 all blocks in StuckOrMove operated with OR;
338
339
340 define blocks grouped in NowOrBefore {

85

B. Encodings of the formula families

341 NowOrBefore (m) := s(m0), S(m);
342 } where m in 3..‘k+1‘, ‘m % 2 != 0‘, m0 = ‘m - 2‘;
343 all blocks in NowOrBefore operated with OR;
344
345 define blocks grouped in LeftS {
346 LeftS(m) := -s(m), NowOrBefore (m);
347 } where m in 3..‘k+1‘, ‘m % 2 != 0‘, m0 = ‘m - 1‘;
348 define blocks grouped in RightS {
349 RightS (m) := NowOrBefore (m), -s(m);
350 } where m in 3..‘k+1‘, ‘m % 2 != 0‘, m0 = ‘m - 1‘;
351
352 all blocks in LeftS operated with OR;
353 all blocks in RightS operated with OR;
354
355 define block S1ImpL := -s(1) , S(1);
356 define block S1ImpR := S(1) , -s(1);
357 block S1ImpL operated with OR;
358 block S1ImpR operated with OR;
359
360 define block S1Imp := S1ImpL , S1ImpR ;
361 block S1Imp operated with AND;
362
363 define blocks {
364 SImp := LeftS(m), RightS (m), S1Imp;
365 } where m in 3..‘k+1‘, ‘m % 2 != 0‘;
366 block SImp operated with AND;
367
368 define blocks {
369 SK1 := s(k1);
370 } where k1 = ‘k + 1‘;
371
372 define blocks {
373 F := Vp (0) , StuckOrMove (m), SK1 , SImp;
374 } where m in 1..‘k-1‘, ‘m % 2 != 0‘;
375 block F operated with AND;
376
377
378 /* --- Define the output block --- */
379 define block G := Q, F;
380
381 }
382
383 output block: G;

86

Appendix C

Source code, installation and
use of QBDef

QBDef is a command-line tool working on Python 3. The source code and information
on how to install and run the tool can be found in the GitHub repository of this
project:

https://github.com/alephnoell/QBDef

On Linux, the tool can be run by executing the QBDef.py script on a terminal:

python3 QBDeF.pyc input_file [-internal] [-verbose]
[-QDIMACS {file.qdimacs | [-stdIO]}]
[-QCIR {file.QCIR | [-stdIO]}]
[-non-prenex-QCIR {file.QCIR | [-stdIO]}]

For example, if my_def.txt is the QBF family definition and values.txt is the
file with the values for the parameters,

python3 QBDeF.pyc my_def.txt values.txt -QCIR

outputs the QCIR format instance on terminal.
The possible options are:

• -QCIR [output_file]: outputs a QCIR, if no output file is provided, it is
printed in the standard output.

• -QDIMACS [output_file]: outputs a QDIMACS, if no output file is provided,
it is printed in the standard output.

• -non-prenex-QCIR [output_file]: outputs a non-prenex QCIR. This feature
is experimental.

87

https://github.com/alephnoell/QBDef

C. Source code, installation and use of QBDef

• -internal: outputs a human-readable version of the internal representation
of the QBF.

• -verbose: prints messages while parsing and processing the definition.

88

Appendix D

Paper

In the following pages a summary paper of this project is attached. This paper was
presented at the 2020 edition of the QBF Workshop, in the context of the 2020 SAT
Conference, as a preliminary report on the work presented in this thesis.

89

A Formal Language for QBF Family Definitions

Noel Arteche Echeverŕıa1,2 and Matthias van der Hallen2

1 University of the Basque Country, Faculty of Computer Science
Manuel Lardizabal 1, 20018 Donostia / San Sebastián, Spain

narteche002@ikasle.ehu.eus
2 KU Leuven, Department of Computer Science

Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium
noel.artecheecheverria@student.kuleuven.be

matthias.vanderhallen@kuleuven.be

Abstract. In this work we propose a formal language to write defini-
tions of classes of Quantified Boolean Formulae (QBF) in terms of —po-
tentially— any type of parameters. A class of formulae provides an encod-
ing in logic terms of some computational problem, and these definitions
of families of formulae usually depend on some parameters determining
the size, structure, alternation patterns of quantifiers and complexity of
the described formulae. These parameters and their relation to the struc-
ture of formulae can be easily encoded in this language. Additionally, we
present QBDef, a computer tool capable of parsing these definitions and
outputting the formulae in either the QCIR or QDIMACS formats to
be fed to a QBF solver. This aims to be both a framework and a tool
for future empirical research in these topics.

Keywords: QBF · Formal language · Proof complexity · PSPACE ·
QCIR · QDIMACS

1 Introduction

Many QBF solvers can be considered to perform a heuristic search for a proof in
some proof system. Consequently, studying the proof complexity of these systems
provides insights into their strengths and weaknesses. The theoretical research
often proceeds by defining classes of formulae or formula families to then show
proof-theoretic lower bounds on them. In practice, the definition of a formula
family declares the structure of the formulae contained in that set. One can think
of a formula family definition as the encoding of a PSPACE problem into QBF.
Problems outside PSPACE might be encoded in QBF too, but (probably) not in
polynomial time.

To check whether the theoretical results on proof systems apply to the QBF
solvers built on top, a tool to ease the generation of instances from formula fami-
lies has been missing. In this extended abstract, we present the work in progress
for a formal language to define formula families and QBDef, a computer tool
capable of reading them and, instantiating concrete parameter values, output a
file that can be fed to a QBF solver.

2 N. Arteche et al.

Although most of the existing formula families in the literature depend on a
single scalar value, the language presented in this paper supports virtually any
data structure for parameter types via the use of embedded Python, e.g. graphs.

Naturally, any programming language could be used for this same purpose, by
means of a script that generated instances of specific formula families. However,
these family-specific scripts work directly with the formulae written in the final
formats. Although this is acceptable if we are interested only in a particular
family, the tool presented in this work (QBDef) lets users focus on the formulae,
without having to worry about lower-level details and formats, and encourages
to playfully come up with inventive hard-to-prove formulae while, at the same,
brings QBF modelling tools closer to the non-QBF-expert.

2 Formula Families

In this context, a formula family or class of formulae is a set of QBF all present-
ing the same structure and meaning. In particular, we are interested in dealing
with a formula family’s definition.

The formula families used in the proof complexity literature are usually rather
artificial. Such a case is that of the QParity formulae, first introduced in [2] and
later used in [1] to show an exponential separation between proof systems. These
formulae have a single parameter n ∈ N. We present the more succinct version of
circuits for this family, as an example of what a formula family definition looks
like.

Definition 1 (QParity circuits [1]). Let n ∈ N, n ≥ 2, and let x1, . . . , xn
and z be Boolean variables. We define the quantifier prefix Pn = ∃x1 . . . ∃xn∀z.
We define an auxiliary circuit t2 as t2 = x1⊕x2 and for i ∈ {3, . . . , n} we define
auxiliary t-circuits as ti = ti−1⊕xi and the complete matrix as ρn = tn⊕z. The
QBF instance will be QParityn = Pn : ρn.

3 The Formal Language

We now give a formalism in which to write these definitions. This formal language
relies on the basic concept of blocks. A block is a sequence of bricks, which are
literals (input variables that may be negated) or references to other blocks (also
possibly negated). A block can then be assigned a single attribute, i.e. a quantifier
or a logical operator (conjunction, disjunction or exclusive disjunction).

Example 1 (Basic use of blocks). The formula ϕ(x, y, z) = (x ∨ y) ∧ z can be
defined in our language using two blocks:

define block B1 := x, y; define block B2 := B1, z;

Blocks only declare ordering of bricks. Meaning is later given through an
attribute (e.g. the and and or operators). These operate between them all the
bricks in the block.

A Formal Language for QBF Family Definitions 3

block B1 operated with OR; block B2 operated with AND;

The structure of blocks captures simultaneously both the idea of gates on
a Boolean circuit as well as the intricate nested patters of quantifier prefixes.
Imagine that the previous formula is quantified as follows:

∀x∃y∃z : ϕ(x, y, z)

We can define some blocks to obtain the structure of the quantifier prefix:

define block Q1 := x;

define block Q2 := y, z;

define block Q := Q1, Q2;

block Q1 quantified with A;

block Q2 quantified with E;

Finally, we can combine the quantifier prefix block Q with the block B2 rep-
resenting ϕ and indicate that this is our output block.

define block Phi := Q, B2; output block: Phi;

To showcase the language in a more realistic scenario, we present the formal
version of the QParity formulae from the previous section.

Example 2 (Formal version of the QParity formulae). Firstly, we declare pa-
rameters, followed by their type as well as possible constraints (in this case,
n ≥ 2). We then declare the variables. Variables xi are denoted x(i) and the
range of indices must be specified.

parameters: {

n : int, ‘n >= 2‘;

}

variables: {

x(i) where i in 1..n;

z;

}

We now declare the blocks. We have blocks for quantifiers and blocks for
gates, but they use the same space and syntax (this allows to define non-prenex
circuits). When quantifying a block, the block is expanded, assigning the quan-
tifier to variables in a depth-first manner.

define blocks {

X := x(i);

} where i in 1..n;

define block Z := z;

define block Q := X, Z;

block X quantified with E;

block Z quantified with A;

In the same section, we define the blocks used to build the matrix of the
formula. An important feature is that of groupings: a set of blocks grouped under
the same name, so that they can all be simultaneously operated or quantified.

4 N. Arteche et al.

define blocks grouped in T {

T(2) := x(1), x(2);

T(i) := T(s), x(i);

} where i in 3..n, s = ‘i-1‘;

define block Ro := T(n), z;

all blocks in T operated with XOR;

block Ro operated with XOR;

define block Phi := Q, F;

For an extra, less artificial example, the Appendix contains the case study of
the Chromatic Formulae, a QBF encoding of the Chromatic Number Problem
where the use of a graph as a parameter of the definition is showcased.

4 The Tool

Based on the language described above, QBDef, a computer tool to parse defini-
tions and output files to be fed to a QBF solver has been developed in Python.

If the input definition declares a PCNF formula, the tool can print either
a QDIMACS or a QCIR file. If the input is a circuit, it can natively output
a QCIR file or convert it to CNF and output a QDIMACS file using William
Klieber’s conversion tool developed in the context of the GhostQ QBF solver3.
If the formulae are non-prenex, they can be printed in the specific QCIR format
for non-prenex formulae.

Complex arithmetic expressions must be written in Python syntax and en-
closed in backticks. This is because they are interpreted and evaluated by Python
itself. Embedded Python gives our language an immense expressive power, as
virtually any condition or structured object can be written in the definitions
using built-in Python data types and functions.

5 Ongoing Work

Currently only a prototype of QBDef exists and requires polishing and extensive
testing4.

Additionally, ongoing work includes the study of other families that could
exploit the features of this language, such as encodings of PSPACE games.

As a long term goal, this work could lead to future empirical research in the
performance of QBF solvers by easily translating both existing and new formula
families into the language presented here.

Acknowledgements

Thanks to Marc Denecker and Montserrat Hermo for co-promoting the Master’s
thesis to which this work belongs. Thanks to Florian Lonsing for his useful
comments and insights.

3 https://www.wklieber.com/ghostq/qcir-converter.html
4 The current prototype is available at https://github.com/alephnoell/QBDef. The

final version of the tool and its source code will be made available in coming months
through this same channel.

A Formal Language for QBF Family Definitions 5

References

1. Beyersdorf, O., Chew, L., Janota, M.: Extension variables in QBF resolution. In:
Workshops at the Thirtieth AAAI Conference on Artificial Intelligence (2016)

2. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based
QBF calculi. In: LIPI Symposium on Theoretical Aspects of Computer Science
(STACS’15). vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz International Proceedings
in Informatics (2015)

3. Sabharwal, A., Ansotegui, C., Gomes, C.P., Hart, J.W., Selman, B.: QBF modeling:
Exploiting player symmetry for simplicity and efficiency. In: International Confer-
ence on Theory and Applications of Satisfiability Testing. pp. 382–395. Springer
(2006)

Appendix

Example 3 (Definition and formal version of the Chromatic Number Problem).
The Chromatic Number Problem is a well-known DP-complete problem: given
a graph G and a natural number k ≥ 1, decide whether k is the chromatic
number of G, i.e. the minimum k such that G is k-colorable. Although this is an
NP-complete problem and, as such, can be encoded into a SAT formula, a more
natural encoding is also possible using quantification: there exists a coloring of
G with k colours and for all other coloring of size k − 1, these are not valid
colorings for G.

We need to define a formula family for the problem, depending on two pa-
rameters: the graph G and the number k. The following definition or encoding
for this problem was given by Sabharwal, et al. in [?].

In what follows we denote by n the number of nodes in the graph G = (V,E).
We define variables xi,j for i ∈ [n] and j ∈ [k] and yi,j for i ∈ [n] and j ∈ [k− 1].
Semantically, any of these variables is set to 1 if and only if node i is set to have
colour j.

We now define a subformula Γ that is true whenever the x-variables form a
legal k-coloring,

Γ =
∧

i∈[n]
(xi,1 ∨ . . . ∨ xi,k) ∧

∧

i∈[n]

j 6=j′∈[k]

(¬xi,j ∨ ¬xi,j′) ∧
∧

(i,i′)∈E
j∈[k]

(¬xi,j ∨ ¬xi′,j)

and another subformula, ∆, which is true only when the y-variables do not
form a legal (k − 1)-coloring

∆ =
∨

i∈[n]
(¬yi,1 ∧ . . . ∧ ¬yi,k−1) ∨

∨

i∈[n]

j 6=j′∈[k−1]

(yi,j ∧ yi,j′) ∨
∨

(i,i′)∈E
j∈[k−1]

(yi,j ∧ yi′,j)

Clearly, k will be the chromatic number of G if there exists an assignment for
the x-variables that makes Γ true and for any assignment to the y-variables, ∆

6 N. Arteche et al.

is true. This gives us the full encoding of the Chromatic Number Problem into
a QBF, that we call the Chromatic Formula, K(G, k):

K(G, k) = ∃x1,1 . . . x1,k . . . xn,1 . . . xn,k∀y1,1 . . . y1,k−1 . . . yn,1 . . . yn,k−1 : Γ ∧∆

We can now give the formal version of this definition in the syntax of our
language. The main new feature showcased by this example is that we need to
check whether a certain edge (i, j) is in the graph, (i, j) ∈? E. For this purpose,
we encode the graph as and adjacency matrix, edges, and then the condition
can be written as ‘edges[i-1][j-1] == 1‘ (using Python syntax). The full
code is given below.

Formal version of the Chromatic Formulae

name: Chromatic formulae;

format: circuit-prenex;

parameters: {

n : int, ‘n >= 1‘;

edges : list;

k : int, ‘k >= 1‘;

}

variables: {

x(i, j) where i in 1..n, j in 1..k;

y(i, j) where i in 1..n, j in 1..‘k-1‘;

}

blocks: {

/* === blocks for quantifers === */

define blocks grouped in X {

X(i) := x(i, j);

} where i in 1..n, j in 1..k;

define blocks grouped in Y {

Y(i) := y(i, j);

} where i in 1..n, j in 1..‘k-1‘;

define block Q := all blocks in X, all blocks in Y;

all blocks in X quantified with E;

all blocks in Y quantified with A;

A Formal Language for QBF Family Definitions 7

/* ==== blocks for matrix ==== */

define blocks grouped in AllColored {

Colored(i) := x(i, j);

} where i in 1..n, j in 1..k;

define blocks grouped in NotColored {

NotColored(i) := -y(i, j);

} where i in 1..n, j in 1..‘k-1‘;

define block Gamma1 := all blocks in AllColored;

define block Delta1 := all blocks in NotColored;

define blocks grouped in SubGamma2 {

SG2(i, j, l) := -x(i, j), -x(i, l);

} where i in 1..n, j in 1..k, l in 1..k, ‘j != l‘;

define blocks grouped in SubDelta2 {

SD2(i, j, l) := y(i, j), y(i, l);

} where i in 1..n, j in 1..‘k-1‘, l in 1..‘k-1‘, ‘j != l‘;

define block Gamma2 := all blocks in SubGamma2;

define block Delta2 := all blocks in SubDelta2;

define blocks grouped in SubGamma3 {

SG3(i, j, l) := -x(i, l), -x(j, l);

} where i in 1..n, j in 1..n, ‘edges[i-1][j-1] == 1‘, l in 1..k;

define blocks grouped in SubDelta3 {

SD3(i, j, l) := y(i, l), y(j, l);

} where i in 1..n, j in 1..n, ‘edges[i-1][j-1] == 1‘, l in 1..‘k-1‘;

define block Gamma3 := all blocks in SubGamma3;

define block Delta3 := all blocks in SubDelta3;

define block Gamma := Gamma1, Gamma2, Gamma3;

define block Delta := Delta1, Delta2, Delta3;

define block F := Gamma, Delta;

all blocks in AllColored operated with OR;

8 N. Arteche et al.

all blocks in NotColored operated with AND;

all blocks in SubGamma2 operated with OR;

all blocks in SubDelta2 operated with AND;

all blocks in SubGamma3 operated with OR;

all blocks in SubDelta3 operated with AND;

blocks Gamma1, Gamma2, Gamma3 operated with AND;

block Gamma operated with AND;

blocks Delta1, Delta2, Delta3 operated with OR;

block Delta operated with OR;

block F operated with AND;

/* define the output block */

define block Phi := Q, F;

}

output block: Phi;

Bibliography

[1] S. Aaronson. P =? NP. In Open Problems in Mathematics, pages 1–122.
Springer, 2016.

[2] A. V. Aho, M. S. Lam, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Boston, 2nd edition, 2007.

[3] G. Amendola, F. Ricca, and M. Truszczynski. New models for generating hard
random Boolean formulas and disjunctive logic programs. Artificial Intelligence,
279:103185, 2020.

[4] C. Ansotegui, C. P. Gomes, and B. Selman. The Achilles’ heel of QBF. In
AAAI, volume 2, pages 2–1, 2005.

[5] S. Arora and B. Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[6] V. Balabanov, M. Widl, and J.-H. R. Jiang. QBF resolution systems and their
proof complexities. In International Conference on Theory and Applications of
Satisfiability Testing, pages 154–169. Springer, 2014.

[7] P. Beame and T. Pitassi. Simplified and improved resolution lower bounds.
In Proceedings of 37th Conference on Foundations of Computer Science, pages
274–282. IEEE, 1996.

[8] P. Beame and A. Sabharwal. Proof Complexity Lecture Notes. 2014.

[9] O. Beyersdorf, L. Chew, and M. Janota. Extension variables in QBF resolution.
In Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[10] O. Beyersdorff, L. Chew, J. Clymo, and M. Mahajan. Short proofs in QBF ex-
pansion. In International Conference on Theory and Applications of Satisfiability
Testing, pages 19–35. Springer, 2019.

[11] O. Beyersdorff, L. Chew, and M. Janota. Proof complexity of resolution-based
QBF calculi. In LIPI Symposium on Theoretical Aspects of Computer Science
(STACS’15), volume 30, pages 76–89. Schloss Dagstuhl-Leibniz International
Proceedings in Informatics, 2015.

99

Bibliography

[12] H. K. Buning, M. Karpinski, and A. Flogel. Resolution for quantified Boolean
formulas. Information and computation, 117(1):12–18, 1995.

[13] H. Chen. Beyond Q-Resolution and prenex form: A proof system for quantified
constraint satisfaction. Logical Methods in Computer Science, Volume 10, Issue
4, Dec. 2014.

[14] H. Chen. Proof complexity modulo the polynomial hierarchy: Understanding
alternation as a source of hardness. ACM Transactions on Computation Theory
(TOCT), 9(3):1–20, 2017.

[15] H. Chen and Y. Interian. A model for generating random quantified Boolean
formulas. In IJCAI, pages 66–71, 2005.

[16] S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. The journal of symbolic logic, 44(1):36–50, 1979.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT press, 2009.

[18] U. Egly, M. Seidl, H. Tompits, S. Woltran, and M. Zolda. Comparing different
prenexing strategies for quantified Boolean formulas. In E. Giunchiglia and
A. Tacchella, editors, Theory and Applications of Satisfiability Testing, pages
214–228, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[19] A. S. Fraenkel, M. R. Garey, D. S. Johnson, T. Schaefer, and Y. Yesha. The
complexity of checkers on an N × N board. In 19th Annual Symposium on
Foundations of Computer Science (sfcs 1978), pages 55–64, 1978.

[20] A. Haken. The intractability of Resolution. Theoretical Computer Science,
39:297–308, 1985.

[21] J. Heylen. Intermediate Logic. Compiled from the Open Logic Text, 2020.

[22] L. Hinde, J. Blinkhorn, and O. Beyersdorff. Size, cost, and capacity: A semantic
technique for hard random QBFs. Logical Methods in Computer Science, 15,
2019.

[23] M. Janota. On Q-resolution and CDCL QBF solving. In International Conference
on Theory and Applications of Satisfiability Testing, pages 402–418. Springer,
2016.

[24] M. Janota and J. Marques-Silva. Expansion-based QBF solving versus Q-
resolution. Theoretical Computer Science, 577:25–42, 2015.

[25] C. Jordan, W. Klieber, and M. Seidl. Non-CNF QBF solving with QCIR. In
Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

100

Bibliography

[26] A. Kfoury. Formal modeling with QBF. URL: http://www.cs.bu.edu/
faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/
modeling-with-QBF.pdf, last checked on 2020-05-12, 2017.

[27] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, Boston, 2006.

[28] J. Krajíček. Proof complexity. In European Congress of Mathematics (ECM),
pages 221–231. Stockholm, Sweden, Zurich: European Mathematical Society,
2005.

[29] J. Krajíček. Proof Complexity. Cambridge University Press, 2019.

[30] C. H. Papadimitriou. Computational Complexity. John Wiley and Sons Ltd.,
2003.

[31] D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
J. Symb. Comput., 2(3):293304, Sept. 1986.

[32] A. Sabharwal, C. Ansotegui, C. P. Gomes, J. W. Hart, and B. Selman. QBF
modeling: Exploiting player symmetry for simplicity and efficiency. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing, pages
382–395. Springer, 2006.

[33] J. A. Storer. On the complexity of chess. Journal of Computer and System
Sciences, 27(1):77 – 100, 1983.

[34] L. Tentrup. Non-prenex QBF solving using abstraction. In N. Creignou and
D. Le Berre, editors, Theory and Applications of Satisfiability Testing – SAT
2016, pages 393–401, Cham, 2016. Springer International Publishing.

[35] G. S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of reasoning, pages 466–483. Springer, 1983.

[36] M. van der Hallen and G. Janssens. SOGrounder: Modelling and solving
second-order logic. In Knowledge Representation and Reasoning Conference,
2018.

[37] A. Van Gelder. Contributions to the theory of practical quantified Boolean
formula solving. In International Conference on Principles and Practice of
Constraint Programming, pages 647–663. Springer, 2012.

[38] Wikipedia. Boolean hierarchy. URL: https://en.wikipedia.org/wiki/
Boolean_hierarchy, last checked on 2020-06-05.

[39] Wikipedia. Generalized geography. URL: https://en.wikipedia.org/wiki/
Generalized_geography, last checked on 2020-05-12.

101

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-QBF.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-QBF.pdf
http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS512/AK_Documents_Past_Semesters/modeling-with-QBF.pdf
https://en.wikipedia.org/wiki/Boolean_hierarchy
https://en.wikipedia.org/wiki/Boolean_hierarchy
https://en.wikipedia.org/wiki/Generalized_geography
https://en.wikipedia.org/wiki/Generalized_geography

	Preface
	Abstract
	Introduction
	Formula Families
	The Formal Language
	A Case Study: Encoding Geography in QBF
	The Tool: Defining and Building Formulae with QBDef
	Conclusion
	Formal grammar
	Encodings of the formula families
	Source code, installation and use of QBDef
	Paper
	Bibliography

