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Introduction

These notes were written in the context of a reading project within the Mas-
ter of Logic at the University of Amsterdam, supervised by Ronald de Haan,
during the month of January of 2021.

Descriptive complexity, the field studying the logical tools needed to de-
scribe computation, started in the early 70s with Fagin’s theorem, and has
been responsible for some important results in complexity theory. These
notes are based on my reading of Neil Immerman’s 1999 textbook Descrip-
tive Complexity. Based on the text, I collected what I found where the most
relevant definitions, theorems and proofs, and I tried to explain them in my
own words, complementing them with new examples that are my own or
come from exercises suggested in the book.

Section 1 presents the descriptive framework, detailing how we describe
computation using (first-order) logic and what complexity and reductions
look like under this perspective; this corresponds roughly to chapters 1, 2
and 3 in Immerman’s book. Section 2 studies what additional logical tools
on top of first-order logic are needed to capture the classP; this corresponds
to chapter 4 of the book. Section 3 covers both the basics of Ehrenfeucht-
Fraissé games as an approach to prove inexpressibility, as well as the proof
that FO 6= P via Håstad’s switching lemma; this corresponds roughly to
the first half of chapters 6 and 13 of Immerman’s book. Finally, sections 4
and 5 look into the classes NP and PSPACE under the descriptive frame-
work, where we require the power of second-order logic; this corresponds
to chapters 7 and 10 of the book.

Noel Arteche
Amsterdam

February 2, 2021
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1 The descriptive framework

Descriptive complexity tries to study the formal linguistic resources needed
to describe computation. It asks what expressive power is needed to de-
scribe the relation between the input and the output of a computational
problem.

As a first attempt, we will take first-order logic as the basic formal lin-
guistic framework to measure descriptive complexity.

1.1 First-order logic

In our version of first-order logic, we will be working with vocabularies (sets
of non-logical symbols), that will be interpreted under (finite) structures.
Eventually, structures will encode the inputs to our problems, and compu-
tation will be modelled using queries.

Definition 1.1 (Vocabularies). A vocabulary τ = C∪P is a sets of non-logical
symbols, where C is a set of constant symbols and P contains relation symbols
or predicates1. If we need to refer more explicitly to the elements of C and
R, we may write

τ = {c1, . . . , cs}︸ ︷︷ ︸
C

∪{R1, . . . , Rr}︸ ︷︷ ︸
P

where R1, . . . , Rr have all some particular arity.

Definition 1.2 (First-order languages). Let τ be a vocabulary. A term on
τ is either a constant symbol c ∈ τ or a variable symbol from the set V =
{x, y, z, . . .} of variables.

From terms we build atomic formulas: either a relation symbol R ∈ τ of
arity n applied to n terms, or an equality of the form t = t′, where t and t′

are terms.
From atomic formulas we can then build any other formulas using the

constants > and ⊥, the usual Boolean operators ¬,∨,∧,⊕,→,↔ and quan-
tifying variables with ∃ and ∀. For simplicity, we take ¬,∧, ∃ as base and
consider the rest as abbreviations in the usual way.

We denote by L(τ) the first-order language on τ , that is, the set of all well-
formed formulas from symbols in τ . A formula with no free variables is a
sentence.

1Unlike other texts, there are no function symbols here, which are “simulated” into rela-
tion symbols.
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Definition 1.3 (Structures). Let τ = {c1, . . . , cs} ∪ {R1, . . . , Rr} be a vocab-
ulary. A structure A for τ is a tuple

A = (A, cA1 , . . . , c
A
s , R

A
1 , . . . , R

A
r )

consisting of a non-empty domain A and an interpretation for the symbols
in τ . The interpretation gives, to every constant symbol c ∈ τ , an element
a ∈ A, so that cA = a, and for every relation symbol R ∈ τ of arity n, an
n-ary relation RA ⊆ An.

The size of A is the size |A| if its domain, which for us will always be
finite. We often abuse the notation and write |A|. Sometimes we also write
Dom(A) to refer to the set A.

We denote by STRUC[τ ] the set of all finite structures for τ .

Definition 1.4 (Satisfaction). Let τ be a vocabulary, ϕ ∈ L(τ) be a formula
and let A ∈ STRUC[τ ].

A variable assignment is a function s : V → A assigning a value to every
variable symbol. For x ∈ V , we call an x-variant the variable assignment s′
such that s′(v) = s(v) for every v ∈ V except possibly for x.

For a term t, we write tAs to refer to the interpretation of t under (A, s).
That is, if t is a variable v ∈ V , then tAs = vAs = s(v), and if t is a constant
symbol c ∈ τ , then tAs = cAs = cA.

Depending on whether ϕ has free variables or not, we will write A, s |=
ϕ or A |= ϕ, and say that (A, s) or A satisfies or models ϕ according to the
usual semantics for first-order logic:

A, s 6|= ⊥
A, s |= t = t′ iff tAs = t′As

A, s |= R(t1, . . . , tn) iff (t1
A
s , . . . , tn

A
s ) ∈ RA

A, s |= ¬ϕ iff A, s 6|= ϕ

A, s |= ϕ ∧ ψ iff A, s |= ϕ and A, s |= ψ

A, s |= ∃xψ iff there exists an x-variant s′ of s such that A, s′ |= ψ

Example 1.1 (Binary strings). We are particularly interested in talking about
binary strings. Perhaps intuitively, one could think that structures to work
with strings will have as domain the set of all strings over a given alphabet
(say, the set of all binary strings: {0, 1}∗). However, this is not the case:
each structure will encode a single binary string, in the same way that when
working with graphs, a structure encodes a single graph.
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The vocabulary is σ1 = {≤, S}, containing a binary relation symbol, ≤,
and the unary relation symbol S. Then, given a binary string, the domain
of the structure will be the set of indices of the string we are representing
(for a string of length n, the set {0, 1, . . . , n− 1}), and a unary predicate S,
which will be true if and only if there is a 1 in that position of the string.
Then, a binary string like 01101 can be encoded by the following structure
B = (B,≤B, SB):

B = ({0, 1, 2, 3, 4}︸ ︷︷ ︸
B

, ≤︸︷︷︸
≤B

, {1, 2, 4}︸ ︷︷ ︸
SB

)

Here, the domainB contains alln indices to refer to the bits in the string,≤ is
interpreted as the usual less-than-or-equal relation on the natural numbers,
and SB is encoding the string 01101.

If we go on an consider a vocabulary σ2 = {≤, A,B} to encode two
binary strings a, b ∈ {0, 1}∗, then we can write a formula that expresses the
binary addition of a and b bit by bit.

Because we are going to work with finite model model theory to model
computation, our structures will have a finite domain. For a domain of size
n, this can be set in bijection with the set {0, . . . , n − 1}, and we will use
these natural numbers to refer directly to the elements in the structure2.

In particular, this means that on any finite structure we have a notion
of order, which we will want to make explicit in our vocabularies. Like in
σ1, our vocabularies will often contain the symbol ≤. Whenever this is the
case, we will only consider structures where≤ is interpreted as a total order.
Hence, when picking elements from STRUC[τ ], we will often insist that they
are ordered structures, meaning that ≤ is interpreted in the standard way.
Besides, whenever this is the case, we will also assume that we have symbols
0, 1,max ∈ τ , and assume that these are interpreted as the first, second and
maximum element in the structure.

Besides, from ≤, we can define a predicate suc(x, y), meaning that y is
the successor of x. On top of that, we may assume to have the predicates
plus(x, y, z) (meaning x + y = z) and times(x, y, z) (meaning x · y = z), as
well as bit(x, i) (meaning that the i-th bit of the binary representation of x
is 1).

In what follows, we implicitly assume that our vocabularies include the
numeric relations and constants (≤, plus, times, bit, suc, 0, 1,max), while the
input relations and constants will be made explicit.

2Sometimes we use indices from 1 to n instead of from 0 to n− 1, and write [n] to denote
the set {1, . . . , n}.
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As well as requiring that structures are ordered, we will require that they
have at least two elements in the domain, so that 0 and 1 are interpreted as
distinct. This allows us to talk about Boolean variables.

We are now ready to define what a query is.

Definition 1.5 (Queries). Let τ and σ be two vocabularies. A query Q is a
mapping

Q : STRUC[σ]→ STRUC[τ ]

that is polynomially bounded. That is, there exists a polynomial p : N→ N
such that for every A ∈ STRUC[σ], |Q(A)| ≤ p(|A|).

IfQ is of the formQ : STRUC[σ]→ {0, 1}, then we call it a Boolean query.
We will often see Boolean queries as subsets of the set of all structures, that
is, Q ⊆ STRUC[σ].

Example 1.2 (Queries on binary strings). Consider the vocabulary σ1 of one
string, as before. Then, the mapping P : STRUC[σ1] → {0, 1} that returns,
for every A ∈ STRUC[σ1], P (A) = 1 if and only if the bit-string encoded in
A represents an even natural number, is a Boolean query.

Furthermore, if we also consider the vocabulary σ2 encoding two bit-
strings, then the mapping

S : STRUC[σ2]→ STRUC[σ1]

that assigns, to every structure A ∈ STRUC[τS2 ] encoding two bit-strings
a, b ∈ {0, 1}∗, a new structure S(A) encoding the binary addition of a and
b, is also a query.

We are particularly interested in queries that we can describe using first-
order formulas. These are k-ary first-order queries: a query Q with a fixed
k ∈ N that maps, to every structure A, a structure whose domain is a first-
order definable subset of Ak; whose constants are all first-order definable
elements of Ak; and whose n-ary relations are first-order definable subsets
of (Ak)n.

Definition 1.6 (First-order query). Let σ and τ = {c1, . . . , cs, R1, . . . , Rn}
be vocabularies, and let k ∈ N. A k-ary first-order query is a query

Q : STRUC[σ]→ STRUC[τ ]

determined by first-order formulas ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs ∈ L(σ) such
that for every A ∈ STRUC[σ], we have that its domain is

Dom(Q(A)) = {(a1, . . . , ak) ∈ Ak | A |= ϕ0(a1, . . . , ak)},
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for every constant ci ∈ τ ,

c
Q(A)
i = (a1, . . . , ak) ∈ Dom(Q(A)) (unique) such that A |= ψi(a1, . . . , ak),

and for every relation Ri ∈ τ of arity n,

R
Q(A)
i = {((a1,1, . . . , a1,k), . . . , (an,1, . . . , an,k)) ∈ Ak·n | A |= ϕi(a1,1, . . . , an,k)}

When Q is a k-ary first-order query, we can write it using a notation
reminiscent of the Lambda calculus as

Q = λx1,...,xl(ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs)

where x1, . . . , xl are the free variables in those formulas.
A first-order query is either Boolean or k-ary, for some k ∈ N. We denote

by FO the set of all first-order Boolean queries, and by Q(FO) the set of all
first-order queries.

Example 1.3 (Database queries). If we were working with some database D
of people and could define formulas ϕSibling(x, y) and ϕAunt(x, y), determin-
ing that x is a sibling of y and x is the aunt of y, respectively, then

QSibling-Aunt = λx,y(>, ϕSibling, ϕAunt)

is a unary query, returning a structure Q(D) = (D,Sibling,Aunt), where
Sibling and Aunt are binary predicates. In this case, ϕ0 = >, as we do not
want to filter the domain.
Example 1.4 (Strong graph product). As an example of a binary query, con-
sider two graphs G1 = (V1, E1) and G2 = (V2, E2). We can encode them in
single structure G = (V1 ∪ V2, V1, V2, E1, E2). Now, we could write a query
to get the strong product of the two graphs. Recall that the strong product
of two graphs is G1 �G2 = (V1 × V2, E1 �E2), where the edges in E1 �E2

are the pairs ((x, y), (x′, y′)) ∈ (V1 × V2)2 satisfying the following formula,
ϕ�:

ϕ�(x, y, x′, y′) : (x 6= x′ ∨ y 6= y′) ∧ (x = x′ ∨E1(x, x
′)) ∧ (y = y′ ∨E2(y, y

′))

Besides, we want the domain of the output structure to be V1 × V2, not
(V1 ∪ V2)2. Hence, we use the following formula ϕ0 to filter the inputs:

ϕ0(x, y) = V1(x) ∧ V2(y)

7



Descriptive Complexity
Summary Notes

Noel Arteche
(February 2, 2021)

We can now take the binary query

Q� = λx,y,x′,y′(ϕ0, ϕ�)

This query will give, for every structure G = (V1 ∪ V2, V1, V2, E1, E2)
encoding two graphs, a structure S = (V1×V2, E1�E2) encoding the strong
graph product. Note that it is a binary query because the domain of S is
V1 × V2, a first-order definable subset of (V1 ∪ V2)2.

Finally, note that for every first-order query

Q : STRUC[σ]→ STRUC[τ ]

A 7→ λx1,...,xl(ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs)

the formulas ϕ0, ϕ1, . . . , ϕr, ψ1, . . . , ψs must be written in L(σ). But this
means that everything in the universe of τ can be rephrased in the language
of σ! That is, Q has all the information needed to build a dual map

Q̂ : L(τ)→ L(σ)

We skip the technical details of how to build Q̂, but we will use it when
necessary along with the following proposition.

Proposition 1.1. Let Q : STRUC[σ] → STRUC[τ ] be a k-ary first-order query.
Then, for every sentence ϕ ∈ L(τ) and every A ∈ STRUC[σ],

A |= Q̂(ϕ)⇔ Q(A) |= ϕ

Proof. By structural induction on ϕ.

1.2 Complexity theory, revisited

It is clear that the notion of queries presented in Definition 1.5 does not yet
shed any light on computation. Definition 1.6 was a bit more precise, in
arguing that we do not want to talk about just any query but about those
that we can describe using first-order formulas. Yet, that is also unrelated
to computation: as far as we know and with the tools presented so far, there
might well be first-order queries, which could be described using first-order
formulas, which might yet be impossible to actually compute3.

3This is not the case, but we do not know at this point. This is the content of Theorem
1.2.
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We now relate the idea of queries to the idea of computable queries. Per-
haps underwhelmingly, we do so by converting a query

Q : STRUC[σ]→ STRUC[τ ]

into a classic binary function

fQ : {0, 1}∗ → {0, 1}∗

and require that the latter is computable by some Turing machine.
First, we specify how to convert a structure into a binary string.

Definition 1.7 (Binary encoding of a structure). Let τ be a vocabulary. We
want to define a function

bin : STRUC[τ ]→ STRUC[σ1]

where σ1 is the vocabulary used to encode a single string.
LetA ∈ STRUC[τ ], and let n = |A|. Every constant symbol c ∈ τ is inter-

preted inA by some natural number in {0, . . . , n−1}, so we can represent cA
simply as the binary representation of that natural number. Analogously,
for every relation symbol R ∈ τ or arity α, we want to encode in binary the
set RA ⊆ Aα. Then take the Cartesian product Aα and fix some order (say,
the lexicographic order). There are nα tuples, so we write down a bit-string
of length nα, where a 1 in the i-th position means that the i-th tuple in Aα
is in RA.

The binary representation of A, bin(A), is simply the concatenation of the
binary representation of all the constant symbols and all the relation sym-
bols.

Note that if a vocabulary τ has s constant symbols and r relation symbols
of arities α1, . . . , αr, then, given a structureA ∈ STRUC[τ ] with |A| = n, we
have that

| bin(A)| =
r∑
i=1

nαi + sdlog ne

This is a polynomial in n. For example, if we take a structure G = (V,E)
to represent a graph with |V | = n vertices, then the size of the binary rep-
resentation of G is | bin(G)| = n2, which is exactly the size of the adjacency
matrix of the graph.
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Definition 1.8 (Computable queries). Let Q : STRUC[σ] → STRUC[τ ] be a
query. We say that Q is a computable query if the function

fQ : {0, 1}∗ → {0, 1}∗

bin(A) 7→ bin(Q(A))

is computable (that is, computable by a Turing machine).

Arguably, the descriptive approach to computation does not fundamen-
tally change anything so far: in the most basic level, it relegates to Turing
machines the task of defining computation. However, it does seem to have
a benefit; namely, that we are more aware of the details of the problem in-
stances, and pay a bit more attention to how these are encoded.

Now, how do we measure the complexity of a given query? Since each
query can be converted into a binary function, and we have well-known
complexity measures for these based on the resources available for Turing
machines, we will again define complexity in relation to machine complex-
ity.

Definition 1.9 (Complexity of a query). Let Q be a query, and let C be a
complexity class. If Q is a Boolean query, then we straightforwardly say
that Q is computable in C if the decision problem encoded by Q is in C. On
the other hand, if Q is not a Boolean query, we say that Q is computable in C
if computing the Boolean query QB is in C, where

QB = {(A, i, b) | i-th bit of bin(Q(A)) is b}

We denote by Q(C) the class of all queries computable in C:

Q(C) = C ∪ {Q | QB ∈ C}

Remark 1.1. Essentially, query Q is in class C if the problem of computing
any bit ofQ’s output is in C. Recall that when defining the notion of queries
in Definition 1.5 we insisted that the size of the query’s output should be
bounded by a polynomial in the size of the input structure. Hence, if a non-
Boolean query Q is in some class C, we can compute the entire output of Q
by making polynomially many calls to the algorithm that decides QB .

In what follows, we assume that classes L, NL, P, NP, coNP, PH,
PSPACE, EXP, etc. are well-known and, in general, we assume that their
definitions are originally machine-based.

In particular, we can already show how the computational power of first-
order descriptions relates to basic classic complexity measures. Recall that
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in Definition 1.6 we presented the class FO: the set of all first-order Boolean
queries; it turns out, its computational power seems to be quite weak, as
suggested by the following result.
Theorem 1.2. FO ⊆ L.
Proof. We need to show that every first-order Boolean queryQ ⊆ STRUC[τ ]
can can be computed in deterministic logspace. Since Q is first-order and
Boolean, Q is just the set of finite structures satisfying some sentence ϕ ∈
L(τ). It is easy to check that no matter what ϕ actually is, it can be rewritten
in prenex form as

ϕ : Q1x1Q2x2 . . . Qkxkα(x1, . . . , xk)

for some k ∈ N∗, where every Qi ∈ {∃,∀}.
Now we must show that there exists a logspace Turing machineM such

that for every A ∈ STRUC[τ ],

A ∈ Q⇔M(bin(A)) = 1

We build such an M by induction on k.
• If k = 0, then ϕ = α, where α has no free variables and no quantifiers

inside. We can show, by a simple but tedious induction on α’s struc-
ture, that there is a logspace machine that computes whether A |= α.
We omit this structural induction.

• If all first-order Boolean queries with k − 1 quantifiers are logspace
computable, then for a formula with k quantifiers take

ψ(x1) : Q2x2 . . . Qkxkα(x1, . . . , xk)

By induction hypothesis there exists a machine M that works for ψ
as long as there are no free variables, so we loop over all possible n
values that x1 can take. On each of them, replace x1 for that value,
run M and see if it accepts. If Q1 = ∃, then it should accept at least
once; if Q1 = ∀ then it should accept for every value. Since M runs
in logspace and for every new value of x1 the space can be reused,
although we will make at most n calls toM , we will only useO(log n)
space. This is a logspace computation.

This concludes the induction. Hence, for every first-order Boolean query
Q ∈ FO, we have Q ∈ L.

It seems like first-order Boolean queries on themselves are not very pow-
erful for computation. However, first-order queries can be powerful enough
to specify interesting reductions between problems.
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1.3 First-order reductions

The last notion that we should specify in the descriptive framework is that
of reductions. In classical complexity theory, we often talk about polynomial-
time reductions: problem A ⊆ {0, 1}∗ is polynomial-time reducible to prob-
lem B ⊆ {0, 1}∗, written A ≤p B, if there exists a polynomial-time com-
putable function f : {0, 1}∗ → {0, 1}∗ such that for every x ∈ {0, 1}∗, it
holds that x ∈ A if and only if f(x) ∈ B. Similarly, depending on the prop-
erties of f , we may be talking about logspace-reductions (≤log), etc.

Under the descriptive approach, a function like f will be a query, con-
verting a structure encoding an instance of problem A into a structure en-
coding an instance of problemB. In particular, we will be interested in that
these queries are first-order.

Definition 1.10 (Reductions). Let C be a complexity class, and let A ⊆
STRUC[σ],B ⊆ STRUC[τ ] be Boolean queries. If the queryQ : STRUC[σ]→
STRUC[τ ] is an element of Q(C) such that for every A ∈ STRUC[σ],

A ∈ A⇔ Q(A) ∈ B

thenQ is aC-many-one reduction fromA toB, writtenA ≤C B. IfQ is a first-
order query, then it is a first-order reduction and we write ≤fo; if Q ∈ Q(L),
thenQ is a logspace reduction, and we write≤log; ifQ ∈ Q(P), thenQ is the
usual polynomial-time reduction (≤p).

Example 1.5 (SAT ≤fo CLIQUE). Let us see how we can convert instances
of SAT into instances of CLIQUE, in such a way that we can describe the
process in first-order logic. That is, we want to show SAT ≤fo CLIQUE. We
will use the usual reduction, but instead of arguing that it is polynomial-
time computable, we will show that it is a first-order query.

First we need to specify the vocabularies for these problems. For SAT,
take some Boolean formula φ and modify it as necessary so that it is written
in CNF with n variables and n clauses. The structure Φ encoding formula
φ is

Φ = ({1, . . . , n}, P,N)

where P is a binary predicate of positive occurrences: (c, v) ∈ P if and only
if variable v occurs as a positive literal in clause c. PredicateN is analogous
but for negative occurrences. For CLIQUE we use the vocabulary γ = {E}
of graphs.

We now want to construct a graph G along with some number k such
that the formula encoded in Φ is satisfiable if and only if the graph encoded
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by G has a clique of size k. IfC = {c1, . . . , cn} contains the n clauses of φ and
L = {v1, . . . , vn,¬v1, . . . ,¬vn} has all possible literals, then G = (V,E, k),
such that

V =(C × L) ∪ {w}
E ={((c1, l1), (c1, l2)) | c1 6= c2 and ¬l1 6= l2}∪
{(w, (c, l)), ((c, l), w) | l occurs in c}

k =n+ 1

That is: we have a graph with a vertex w plus vertices (c, l) ∈ C × L for
every pair of clause and literal. There is and edge between vertices (c1, l1)
and (c2, l2) if and only if points come from different clauses and the literals
are not the negation of each other. Besides, point w is connected to every
pair (c, l) such that l does occur in c.

Now note that if G has a clique of size n+ 1, then it must contain w and
one point for every clause. Then, by making true those literals, we get a
satisfying assignment. On the other hand, if Φ has a satisfying assignment,
then this determines a n + 1-clique for G: it will consist of one point per
clause that is satisfied, in addition to w.

Hence, the query Q : Φ 7→ G is a many-one reduction, as

Φ ∈ SAT⇔ Q(Φ) = G ∈ CLIQUE

Clearly, the query Q is polynomial-time computable, hence the usual
argument concludes that SAT ≤p CLIQUE. We are interested in showing
that Q is first-order.

This is the case, as we can encode it in the following ternary first-order
query:

Q = λx1,x2,x3,y1,y2,y3(ϕ0, ϕ1, ψ1)

The idea is that a vertex is encoded with a tuple (x1, x2, x3), such that
x1 corresponds to the clause, x2 corresponds to the variable and x3 ∈ {1, 2}
depending on whether the literal is positive or negative. Point w will be
(1, 1, 3). Hence,

ϕ0(x1, x2, x3) : (x3 ≤ 2) ∨ (x1 = 1 ∧ x2 = 1 ∧ x3 = 3)

For the edge relation, we simply transcribe the definition of E into a
formula ϕ2, built from subformulas:

ϕ′1 : α1 ∨ (α2 ∧ P (y1, y2)) ∨ (α3 ∧N(y1, y2))

13



Descriptive Complexity
Summary Notes

Noel Arteche
(February 2, 2021)

α1 : x1 6= y1 ∧ x3 < 3 ∧ y3 < 3 ∧ (x2 = y2 → x3 = y3)

α2 : x3 = 3 ∧ y3 = 1

α3 : x3 = 3 ∧ y3 = 2

Then, ϕ1 is the symmetric closure of ϕ′1:

ϕ1(x1, x2, x3, y1, y2, y3) : ϕ′1(x1, x2, x3, y1, y2, y3) ∨ ϕ′1(y1, y2, y3, x1, x2, x3)

Finally,
ψ1(x1, x2, x3) : x1 = 1 ∧ x2 = 2 ∧ x3 = 2

Hence, Q is a ternary first-order query. It follows that SAT ≤fo CLIQUE.

Of course, we would like first-order reductions to work in the usual
way. That is, we want first-order reductions to be closed for some classes
of queries.

Definition 1.11 (Closure under first-order reductions). Let C be a set of
Boolean queries. We say that C is closed under first-order reductions if for
every pair of Boolean queries A and B, if A ≤fo B and B ∈ C, then A ∈ C.

Is it the case that first-order reductions are closed for interesting classes
of queries? The following proposition, which follows easily from the fact
that FO ⊆ L (Theorem 1.2), shows that this is often the case.

Proposition 1.3. Let C be a set of Boolean queries. If C is closed under logspace
reductions, then C is closed under first-order reductions.

In fact, most if not all of the classes we will encounter are closed under
first-order reductions. To show this for some class C, a first attempt will be
to check that the class is closed under logspace reductions, and then invoke
the previous proposition.

However, there exists a different possible scenario, that of languages. Af-
ter all, part of our task is to relate classic complexity classes to logical lan-
guages, by showing that they define the same sets of problems. We say that
a language L (such as first-order logic) is closed under first-order reductions if
the set of Boolean queries definable in L is closed under first-order reduc-
tions.

To show whether a language is closed under first-order reductions, note
that if we have queriesA andB,A ≤fo B by reductionQ andB is expressible
in L as formula ϕB , we have that for every structure A,

A ∈ A⇔ Q(A) ∈ B ⇔ Q(A) |= ϕB ⇔ A |= Q̂(ϕB)
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where the first implication is justified by definition of reductions, the second
one by the definition of Boolean queries, and the third one by Proposition
1.1 (dual of queries). Hence, it suffices to check whether Q̂(ϕB) ∈ L. If so,
thenA is expressible inL and henceL is closed under first-order reductions.

A question remains open: are the usual complete problems for basic
classes like L, NL or P also complete under first-order reductions? The
answer is affirmative, as we now show.

Definition 1.12 (REACH and DREACH). Let REACH be the reachability prob-
lem on graphs:

REACH = {(G, s, t) | there is a path in graph G from s to t}

Besides, let DREACH be the deterministic version of REACH: the restriction
of REACH to graphs with a unique outgoing edge for every vertex.

Theorem 1.4. The problem REACH is NL-complete via first-order reductions.

Proof. Clearly REACH ∈ NL, as in a graph with n vertices, any path from s
to t has at most length n. Hence, a nondeterministic walk starting at s can
be computed in spaceO(log n), simply be keeping the current vertex, which
is a number less o equal than n, hence representable in a bit-string of length
log n.

For the reduction, we need to show that for everyL ∈ NL,L ≤fo REACH.
Let L ∈ NL, L ⊆ STRUC[σ]. There exists a nondeterministic logspace ma-
chine M , which uses at most c log n cells, and decides L. The idea for the
reduction Q : STRUC[σ] → STRUC[γ] (where γ is the language of graphs)
is to give, for everyA ∈ STRUC[σ], the configuration graph ofM along with
the start and accepting states. Hence, it will hold that

A ∈ L⇔ Q(A) ∈ REACH

It then suffices to show that reduction Q is first-order. The key idea is
that a given configuration of M can be encoded as a k-ary tuple

(p, r1, . . . , rα, w1, . . . , wc) ∈ [n]k

where α is the maximum arity over the relation symbols in σ, and k = α+
c+ 1. For large enough n, p ∈ [n] encodes the machine’s state and positions
of the input and working tapes’ heads; variables r1, . . . , rα encode a tuple
in Aα, such that the machine is reading relation R in the input tape and
reading a 1 if and only ifA |= R(r1, . . . , rα); variables w1, . . . , wc encode the
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contents of the work tape, as there are always at most c log n cells in use, and
every block of log n bits encodes a natural number in [n].

We can now write formulaϕM (c1, c2), meaning that it is possible to go to
configuration c2 from configuration c1, and formulas Start(c) and Accept(c),
indicating that c is a start or accepting state, respectively. We skip the details
of these formula encodings.

Finally, we have that the reduction is the first-order k-ary query

Q = λc1,c2(>, ϕM , Start,Accept)

We conclude that REACH is NL-complete via first-order reductions.

Theorem 1.5. DREACH is L-complete via first-order reductions.

Proof. The argument is analogous to the previous theorem.

Another variant of the reachability problem exists is complete for P.

Definition 1.13 (Alternating graphs). A graph G = (V,E,A) is alternating
when there is a subset A ⊆ V of vertices labelled as universal. The reacha-
bility relation on alternating graphs is such that it is reflexive and:

• For every v 6∈ A, v reaches w ∈ V if and only if there is an edge from
v to some z such that z reaches w.

• For every v ∈ A, v reaches w ∈ W if and only if for every outgoing
edge (v, z), z reaches w.

We denote by AREACH the reachability problem on alternating graphs.

Theorem 1.6. AREACH is P-complete under first-order reductions.

Proof. Omitted; similar to the previous two theorems.
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2 P under the descriptive framework

Since FO ⊆ L, we expect first-order languages to be too weak to express
most interesting problems. In particular, it seems like FO cannot express
“easy” problems like the ones in P.

For example, try to express something like the problem AREACH, pre-
sented in Definition 1.13, which is P-complete under first-order reductions.
A first-order query expressing AREACH would need to describe the reacha-
bility relation R on alternating graphs, and this would look something like
this:

R(x, y) : x = y ∨ (∃z(E(x, z) ∧R(z, y))

∧A(x)→ ∀z(E(x, z)→ R(z, y)))

This formula is recursive, as R appears again inside its definition, but
this is not allowed! This invites us to increase the power of our logic tools.
Indeed, we would like to extend first-order logic with the ability to write
inductive definitions.

2.1 Inductive definitions

Inductive definitions are formalized using the Least Fixed-Point (LFP) oper-
ator. We will write R from the previous example as the following formula:

ϕ(P, x, y) : x = y ∨ (∃z(E(x, z) ∧ P (z, y))

∧A(x)→ ∀z(E(x, z)→ P (z, y)))

where P is the predicate that we want to find, such that it “solves” the equa-
tion

ϕ(P, x, y) = P (x, y)

which will give us our desired reachability formula, R. In other words,
P will be a fixed-point of ϕ and we want, in particular, the smallest such
relation: the least fixed-point.

Under a given structureA, we want to find, amongst all candidate inter-
pretations for P , the one that is the least fixed-point. We will start by using
as candidate interpretation for the predicate P the empty set. This will give
us the points that satisfy the base case of the inductive definition. We denote
this set by ϕA(∅). We will then use as candidate interpretation this new set.
We denote by ϕrA(∅) the set of tuples of A obtained after iterating r times
starting at ∅.
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Intuitively, if |A| = n, then for our reachability relationR, iterating more
that n2 times will not make our relation bigger, as there are no further tuples
to add. Besides, obtaining the least fixed-point by interation ensures that
we get the smallest one, as desired. This is formalized by the following
result, which needs to assume that the formula ϕ is monotone: for every two
candidate interpretations S and T ,

S ⊆ T ⇒ ϕ(S) ⊆ ϕ(T )

This is an mild requirement, as if a formula is positive in the new relation
symbol (i.e. it appears under an even number of negations), then it is also
monotone.

Theorem 2.1 (Finite Knaster-Tarski). Let ϕ(R, x1, . . . , xk) be a monotone first-
order formula, depending on a new relation symbol R of arity k. For any finite
structure A, the least fixed-point of R exists. It is equal to ϕrA(∅), where r is mini-
mal, such that r ≤ |A|k, and for every r < r′ ≤ |A|k, ϕrA(∅) = ϕr

′
A(∅).

Proof. We first show that the fixed-point exists, and then show that the one
we obtain is the least one.

Because ϕ is monotone, that means the following inclusions hold:

∅ ⊆ ϕ1
A(∅) ⊆ ϕ2

A(∅) ⊆ ϕ3
A(∅) ⊆ . . .

Some of these inclusions will be strict, but not forever. If they were,
then there would always be new tuples to add to the relation, but this is
impossible, as there are only |A|k possible tuples to add and A is finite.
Hence, for some r ≤ nk, ϕrA(∅) = ϕr+1

A (∅), that is, ϕA(ϕrA(∅)) = ϕrA(ϕ), so
we have a fixed-point of ϕ. We have shown that there exists an r ≤ |A|k
such that ϕrA(ϕ) is a fixed-point. In other words, fixed-points exist and can
be obtained through iteration.

Do we obtain the least one in this way? Yes. Simply note that for any
other fixed-point S, for every i, ϕiA(∅) ⊆ S. We show it by induction on i.
For i = 0, ϕ0

A(ϕ) = ∅ ⊆ S. For the inductive case, if the inclusion holds up
to i, then for i+ 1 we have

ϕi+1
A (∅) = ϕA(ϕiA(∅)) ⊆ ϕA(S) = S

where the last inclusion holds because ϕ is monotone and by induction hy-
pothesis ϕiA(∅) ⊆ S, and the equality holds because S is a fixed-point.

Therefore, via iteration, we can obtain the least fixed-point, and there is
a minimal number of iteration that achieves it.
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This theorem ensures that every time we define a new predicate by in-
duction through a monotone first-order formula, we will be able to find its
least fixed-point, hence its right interpretation. We denote by fixR(x1,...,xk) ϕ
the least fixed-point of some first-order formula ϕ(R, x1, . . . , xk), which we
will allow to use as a new relation symbol in our vocabularies.

Definition 2.1 (FO(LFP)). We denote by FO(LFP) the set of all Boolean
queries that can be described using first-order formulas allowed to contain
the least fixed-point operator to create new relation symbols.

2.2 P = FO(LFP)

With the fix operator in hand, we can define the reachability relation on
alternating graphs, and hence we can describe the computation of the P-
complete problem AREACH. It is now reasonable to conjecture that P and
FO(LFP) are closely related. Before we make this explicit, we make sure
that FO(LFP) preserves the closure under first-order reductions.

Proposition 2.2. FO(LFP) is closed under first-order reductions.

Proof. Use the technique explained at the end of Section 1.3.

We are now ready to show that FO(LFP) characterizes precisely the
complexity class P.

Theorem 2.3. Over finite ordered structures, FO(LFP) = P.

Proof. We first show that FO(LFP) ⊆ P. Let Q ∈ FO(LFP), be a Boolean
query defined by first-order formula ϕ (that may contain the fix operator).
We need to show that Q ∈ P, that is, there exists a polynomial-time Turing
machine M deciding Q. This means that for every finite structure A,

A ∈ Q⇔ A |= ϕ⇔M(bin(A)) = 1

We will show that evaluating whetherA |= ϕ can be done in polynomial
time. If ϕ does not contain the fix operator, then by Theorem 1.2 (FO ⊆ L),
ϕ can be checked under A in logspace, hence also in poly-time. On the
other hand, if ϕ contains the fix operator, then in order to check ϕ we need
to obtain its least fixed-point in polynomial time. We know, by the Knaster-
Tarski theorem, that fixR(x1,...,xk) ψ = ψn

k

A (∅), so we can evaluate ψrA(∅) for
every r ∈ [nk] to find the least fixed-point. Because at each time we only
check whether at most nk tuples enter the interpretation, and this is re-
peated nk times, we can compute the least fixed-point of the formula under
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A in nk · nk = n2k steps. Thus ϕ can be evaluated under A in polynomial
time, so FO(LFP) ⊆ P.

Now, to show that P ⊆ FO(LFP), note that for every L ∈ P,

L ≤fo AREACH

as AREACH is P-complete. Besides, with the power of inductive definitions,
AREACH ∈ FO(LFP). And we also know FO(LFP) is closed under first-
order reductions. Hence, L ∈ FO(LFP). Therefore, P ⊆ FO(LFP).

We can conclude that FO(LFP) = P.

2.3 Inductive depth and iterations

When showing that the least fixed-point operator can be evaluated in poly-
nomial time, we calculated the iteration of the inductive definition up to nk
times. However, it may well be that a certain inductive definition closes for a
smaller number of iterations. The number of times a recursive formula has
to be iterated before it closes is called its depth. We denote it by depth(ϕ;A).
If we drop the structure, then we write depth(ϕ) for the maximum depth of
ϕ over all structures of size n. If ϕ is an R-positive formula, where R has
arity k, then clearly depth(ϕ) ≤ nk.

Interestingly, alternative inductive definitions of the same predicate of-
ten have significantly different depths. For example, the formulas

ϕ(R, x, y) : x = y ∨ ∃z(E(x, z) ∧R(z, y))

ψ(R, x, y) : x = y ∨ E(x, y) ∨ ∃z(R(x, z) ∧R(z, y))

are both defining the reflexive transitive closure on a graph. However, ϕ has
depth(ϕ) = n, while depth(ψ) = dlog ne+ 1.

Using the depth of inductive definitions, we can make finer gradations
between complexity classes.

Definition 2.2 (IND[f(n)]). Let IND[f(n)] be the subclass of FO(LFP)
such that all fixed points taken are of first-order formulas of depthO(f(n)).

Therefore, FO(LFP) consists of all the classes IND[f(n)] together, for
f(n) an polynomial:

FO(LFP) =
⋃
k∈N

IND[nk]

Besides, we can give somewhat of a “lower bound” to these classes. Note
that since the formula ψ(R, x, y) defined before captures the reachability re-
lation on graphs and depth(ψ;n) ∈ O(log n), we have REACH ∈ IND[log n].
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In addition, one can check that IND[log n] is closed under first-order reduc-
tions, so using the fact that REACH is NL-complete, we have the following.

Proposition 2.4. NL ⊆ IND[log n].

It turns out that that are many properties that can be defined with in-
ductive definitions of logarithmic-depth. The following is perhaps one of
the most relevant.
Example 2.1 (PARITY ∈ IND[log n]). Another interesting problem in the
class IND[log n] is PARITY: the set of all binary strings with an odd number
of ones. We will show that PARITY can be described using an inductive
definition of depth O(log n).

We inductively define predicate ρ, which takes as argument the tuple
(i, j, d), so that the number of ones between indices i and j is exactly d:

ρ(i, j, d) : (i = j ∧ ((S(i) ∧ d = 1) ∨ (¬S(i) ∧ d = 0)))∨
(i < j ∧ ∃k∃k′∃d1∃d2∃l∃l1∃l2
(i ≤ k ∧ plus(i, l, j) ∧ plus(i, l1, k) ∧ suc(k, k′) ∧ plus(k′, l2, j)∧
((even(l)→ l1 = l2) ∧ (¬even(l)→ suc(l1, l2)))∧
ρ(i, k, d1) ∧ ρ(k′, j, d2) ∧ plus(d1, d2, d)))

The blue part of the formula is the base case, while the following lines
define the inductive case. In red we have the recursive calls to ρ. Besides,
we use predicate

even(p) : ∃k∃t(suc(1, t) ∧ times(t, k, p))

In the definition of ρ we would replace the recursive calls by some new
relations symbol, P , and then find the least fixed-point of ρ(P, i, j, d). Fi-
nally, the formula ϕ deciding parity will be

ϕ : ∃d((fixP (i,j,d) ρ)(0,max, d) ∧ ¬even(d))

Hence, for every A ∈ STRUC[σ1],

A ∈ PARITY ⇔ A |= ϕ

It is left to show that depth(ϕ) = depth(ρ) ∈ O(log n). Simply note that
ρ is a simple divide and conquer approach to the parity problem. We have
ρ1A(∅) = {(i, i, d) | d = 1 if S(i), otherwise d = 0}, that is, all segments of
length 1. If we iterate again, we will have all segments of length 1 and 2,
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tagged with their corresponding number of ones. If we iterate again, we
will have all segments of length 1, 2, 3 and 4. If we iterate again, we will
have all segments of length up to 8... and so on. Hence, to get lo length 8
we need to iterate log 8 + 1 = 3 + 1 = 4 times. For length 9, dlog 9e+ 1 = 5
times. It is easy to see that, in general, depth(ρ) = dlog ne+ 1 ∈ O(log n), so
PARITY ∈ IND[log n].

There is an alternative way to look at inductive definitions. Note that to
calculate the least fixed-point of a formula of arity k we iterate at most nk
times. This polynomial iteration is made more explicit if we normalize our
formulas. Given an R-positive formula ϕ(R, x1, . . . , xk), where R has arity
k, we can rewrite R in normal form as

ϕ ≡ (Q1z1.ψ1) . . . (Qszs.ψs)(∃x1 . . . ∃xk.ψs)R(x1, . . . , xk)

(see Lemma 4.20 in Immerman’s book, p. 63).
Example 2.2 (Reflexive transitive closure in prenex normal form). Take the
formula

ψ(R, x, y) : x = y ∨ E(x, y) ∨ ∃z(R(x, z) ∧R(z, y))

defining reflexive transitive closure on a graph, which has inductive depth
log n. We can write this in normal form as follows. For the base case, one
can rewrite

ψ′(R, x, y) : ∀z. (¬(x = y ∨ E(x, y)))︸ ︷︷ ︸
ψ1

∃z(R(x, z) ∧R(z, y))

Note that for every x, y such that x = y or E(x, y) (i.e. pairs of points that
are in the relation in the base case), the formula ψ1 is vacuously true.

For the rest, we can take

ψ2 : (u = x ∧ v = z) ∨ (u = z ∧ v = y)

ψ3 : (x = u ∧ y = v)

and write

ψ′′(R, x, y) : (∀z.ψ1)∃z(∀u∀v.ψ2)(∃x∃y.ψ3)R(x, y)

If we denote byQ the quantifier block (∀z.ψ1)∃z(∀u∀v.ψ2)(∃x∃y.ψ3), then

ψ(R, x, y) ≡ QR(x, y)
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And, in fact, for every A ∈ STRUC[γ],

A |= fixR(x,y) ψ ↔ Qlog |A|R(x, y)

where Qr means the quantifier block repeated r times (in this case log |A|
times, because that is the amount of iterations needed for the inductive def-
inition to close).

The previous example showcases that instead of writing inductive def-
initions with the fix operator, we can equivalently iterate a quantifier block
polynomially many times.

Definition 2.3 (FO[f(n)]). We denote byFO[f(n)] the set of Boolean queries
that can be described by first-order formulas with a quantifier block iterated
O(f(n)) times.

Theorem 2.5. For every polynomially bounded function f(n),

IND[f(n)] = FO[f(n)]

We omit the proof of the previous result; it follows from several nor-
mal form theorems. However, it is important to note that the theorem only
holds for polynomially bounded functions. This is because an inductive defi-
nition can never be iterated more than polynomially many times, but quan-
tifier blocks can. We will later see that in fact the theorem breaks for super-
polynomial functions, and only the left-to-right inclusion holds for all f(n).

23



Descriptive Complexity
Summary Notes

Noel Arteche
(February 2, 2021)

3 Separation as inexpressibility

Until this point, we have characterized descriptively the most relevant as-
pects of the world of complexity up to and including polynomial time. We
have the following inclusions:

FO ⊆ L ⊆ NL ⊆ IND[log n] ⊆
⋃
k∈N

IND[nk] = FO(LFP) = P

The reason we are embarking on this descriptive endeavour is that we
think this new framework can offer insights into classic complexity theory
problems. That is: it can show whether certain complexity classes are dis-
tinct or not. Hence, before we keep finding descriptive analogs to other
classic complexity classes, it is reasonable to ask whether the descriptive
framework provides any tools to tell whether any of previous inclusions
are strict.

Intuitively, such separation theorems should take the form of inexpress-
ibility theorems. For example, our first goal will be to show that some query
in FO(LFP) cannot be expressed without inductive definitions, thus show-
ing

FO ( P

Note, however, that the usual techniques for first-order inexpressibility,
such as the Compactness Theorem, will not work here, as we are dealing
with finite structures. We will tackle this using a game-theoretic approach
to first-order semantics: the Ehrenfeucht-Fraissé games.

3.1 The Ehrenfeucht-Fraissé games

Before we go on, it will come handy to define some notions of relation be-
tween structures. Specifically, substructures and isomorphisms.

Definition 3.1 (Substructure). Let τ be a vocabulary, and letA,B ∈ STRUC[τ ].
We say that A is a substructure of B, written A ⊆ B, whenever

(i) A ⊆ B.

(ii) For every constant symbol c ∈ τ , cA = cB.

(iii) For every relation symbol R ∈ τ , RA = RB ∩ An, where n is the arity
of R.

Definition 3.2 (Isomorphism). Let A,B ∈ STRUC[τ ]. We say that A and B
are isomorphic, writtenA ∼= B, if there exists a bijection f : A→ B such that
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(i) For every constant symbol c ∈ τ , f(cA) = cB.

(i) For every relation symbol R ∈ τ of arity n, (a1, . . . , an) ∈ RA if and
only if (f(a1), . . . , f(an)) ∈ RB.

Proposition 3.1. Let τ be an vocabulary and let A,B ∈ STRUC[τ ], such that
A ∼= B. Then, for every sentence ϕ ∈ L(τ \ {≤}),

A |= ϕ⇔ B |= ϕ

Proof. Straightforward induction on the structure of ϕ.

Note how we leave order out of the vocabulary in the previous propo-
sition. This is because if we include order, finding isomorphisms becomes
uninterestingly more difficult. In fact, in what follows we assume that all
vocabularies exclude the order relation and numeric predicates. This will
weaken our results, as we mention later in Remark 3.2.

We can now think of the following game, between two players, Samson
and Delilah, over two structures A,B ∈ STRUC[τ ]. Samson is convinced
that A 6∼= B, while Delilah is convinced that the two structures are indeed
isomorphic. They decide to prove each other wrong in m rounds, using k
pairs of pebbles. At each round, Samson chooses one of the k pairs of peb-
bles and one of the structures, and assigns one of the pebbles to an element
in that structure. Then, Delilah places the remaining pebble in some ele-
ment of the other structure. Intuitively, Delilah is trying to give, for every
element Samson points at, the isomorphic image of it.

We can probably think that when playing the game, Samson has some
formula ϕ in mind, for which he thinks A |= ϕ and B 6|= ϕ. Then, we can
imagine that when playing the game, the pebbles are analogous to variable
assignments: he tries to assign the pebbles/variables in such a way that his
formula is made true in one of the structures but not in the other under
Delilah’s choices.

If the formula Samson has in mind to prove Delilah wrong has more
quantified variables than the number of pebbles they are playing with, then
it may be the case the even if the structures are not isomorphic, Samson
cannot prove so in their game. Then, when do we say that one of them has
won? Well, we can basically assess whether Delilah has been successful in
providing an isomorphism so far.

We can make this a bit more formal.

Definition 3.3 (Ehrenfeucht-Fraissé games). Let τ = C∪P be an unordered
vocabulary, let A,B ∈ STRUC[τ ], and let m, k ∈ N. We denote by Γkm the
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tuple (τ,A,B,m, k) describing the game presented above, played between
Samson and Delilah over structures A and B using k pairs of pebbles and
m moves. We call Γkm an Ehrenfeucht-Fraissé game.

At each move r ∈ [m], we describe the state of the game by a pair of
partial functions αr and βr,

αr : C ∪ {x1, . . . xk} → A

βr : C ∪ {x1, . . . xk} → B

where we allow some of the variables to be left unassigned, indicating that
those pebbles are currently off the board.

We think of a move in the game as an update to the state of the board.
If (αr, βr) is the state of the board after move r and at move r + 1 Samson
chooses the i-th pair of pebbles and these are assigned to elements a ∈ A
and b ∈ B in the structures, then

(αr+1, βr+1) = (αr[xi 7→ a], βr[xi 7→ b])

where we take (α0, β0) as the initial state, when only constant have been
assigned, according to the interpretations given by the structures.

The state (αr, βr) determines two things. Firstly, it determines induced
substructures for A and B. These are substructures Ar, Br taking as do-
mains the sets Rng(αr) and Rng(βr). Secondly, it determines a function
fr : αr(xi) 7→ βr(xi). Then, we can say that Delilah won round r if fr is an
isomorphism between the induced substructures Ar and Br. Delilah wins
the game if she wins every round. We write A ∼km B to indicate Delilah
wins the game Γkm. It is easy to check that ∼km is an equivalence relation.
Whenever Delilah wins for every k or for every m, we can omit one of the
indices.

With the idea of Ehrenfeucht-Fraissé games in hand, we are now closer
to answer (some) inexpressibility questions. First, let us make finer grada-
tions inside a language.

Definition 3.4 (Quantifier rank). Let L be a language (such as first-order
logic), and let ϕ be a formula in this language. We denote by q(ϕ) the quan-
tifier rank of ϕ, the number of nested quantifier in ϕ.

The quantifier rank of a formula, along with its number of variables, lets
us define the following subclasses inside a language.
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Definition 3.5. LetL be a language (such as first-order logic), and let k,m ∈
N. We denote by Lk the subset of formulas of L containing occurrences of
only k variables, x1, . . . , xk. We denote by Lm the subset of formulas of L
with quantifier rank at most m. Finally, we denote by Lkm the intersection
Lk ∩ Lm.

Definition 3.6 (L-equivalence). Given a vocabulary τ on language L and
two structures A,B for it, we say that A and B are Lkm-equivalent, written
A ≡km B, if they agree on all sentences of Lkm(τ):

A ≡km B if and only if for all sentence ϕ ∈ Lkm(τ), A |= ϕ⇔ B |= ϕ

This lets us state and prove the fundamental theorem of Ehrenfeucht-
Fraissé games: Delilah wins game Γkm if and only if the structures are Lkm-
equivalent. To prove that, we first need a lemma.

Lemma 3.2. Let τ be a first-order vocabulary, and let r ∈ N. There are only finitely
many inequivalent first-order sentences of quantifier rank r. That is, there are only
finitely many inequivalent sentences in Lr(τ).

Proof. For this proof, we assume that Lr(τ) contains sentences only. Let us
first make explicit what it means for sentences to be equivalent. We say that
ϕ,ψ ∈ Lr(τ) are equivalent, written ϕ ≈ ψ, if for every pair of structures
A,B ∈ STRUC[τ ],A |= ϕ if and only if B |= ψ. It is straightforward to check
that ≈ is indeed an equivalence relation. Then the lemma states that for
every r ∈ N, the quotient set Lr(τ)/≈ is finite.

We prove the lemma by induction on r. For r = 0, we have finitely many
atomic formulas; say a of them. Each of these can be true or false, so we can
take them as propositional variables. We use them alongside ¬ and ∨ to
build new formulas, so these are just propositional formulas with up to a
propositional letters. Hence, we cannot build more formulas than Boolean
functions on a variables. Since there are 2(2

n) possible Boolean functions
over n variables, we have that L0(τ)/≈ has

∑a
n=0 2(2

n) equivalence classes,
hence finitely many inequivalent formulas.

Now assume Lr(τ)/≈ is finite up to r, and show it is also finite for r+ 1.
In particular, suppose Lr(τ)/≈ has k equivalence classes. Now, for every
class [ϕ] ∈ Lr+1(τ)/≈, we can take as representative some other formula
ϕ′ ≈ ϕ in prenex form. Similarly, we characterize each of the k equivalence
classes ofLr(τ)/≈ by a prenex formula. Then, ϕ′ = Qxψ, where q(ψ) = r, so
ψ ∈ Lr(τ), and ψ is also in prenex form. Since there are only k inequivalent
ψ’s, there can only be at most 2k inequivalent formulas taking the shape of
ϕ′, so Lr+1(τ)/≈ is finite. This concludes the induction.
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For every r ∈ N, Lr(τ)/≈ is finite, so there are only finitely many in-
equivalent formulas of rank r. This was to show.

We can now prove the fundamental theorem.

Theorem 3.3 (Fundamental theorem of Ehrenfeucht-Fraissé games). Let τ
be an unordered vocabulary, let A,B ∈ STRUC[τ ], and let k,m ∈ N. Then,

A ∼km B if and only if A ≡km B

Proof. For the forward direction, we proceed by induction onm. Form = 0,
if A ∼k0 B, then f0 is an isomorphism between the induced substructures
A0 and B0. That is, for every sentence ϕ ∈ L(τ),

A0 |= ϕ⇔ B0 |= ϕ

In particular, Lm0 (τ) ⊆ L(τ), so for every sentence ψ ∈ Lm0 (τ),

A0 |= ψ ⇔ B0 |= ψ

Now we show by a simple induction on the structure of ψ thatA |= ψ if and
only if B |= ψ. Note that q(ψ) = 0, which means ψ cannot be a quantified
formula. For the base cases:

• Ifψ = R(c1, . . . , cn), then it follows immediately by the fact that cA1 , . . . , cAn ∈
Rng(α0) = A0.

• If ψ is c = c′, it again follows immediately for the same reason.

For the inductive cases:

• Ifψ = ¬χ, then the induction hypothesis gives us thatA |= χ iffB |= χ,
hence A 6|= ψ iff B 6|= ψ, as desired.

• If ψ is a disjunction, then it follows immediately from the induction
hypothesis.

This concludes the structural induction. Therefore, for every sentence ψ ∈
Lm0 (τ), A |= ψ if and only if B |= ψ. That is, A ≡k0 B. This concludes the
proof for base case.

For the inductive case, suppose A ∼km B implies A ≡km B up to m, and
show the contrapositive for m + 1. If A 6≡km+1 B, that means there exists a
sentence ϕ ∈ Lkm+1(τ) for which A and B disagree. In particular, let ϕ be
the in prenex form and assume without loss of generality that A |= ϕ and
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B 6|= ϕ. Note that q(ϕ) = m + 1 ≥ 1, so ϕ cannot be an atomic formula.
It also cannot be ϕ = ¬ψ, as then it is not prenex. Similarly, ϕ cannot be a
disjunction. Hence, ϕ = ∃xψ(x), there exists an a ∈ A such that A |= ψ(a),
but for every b ∈ B, B 6|= ψ(b). That is: A 6≡km B. Since q(ψ) = m, by the
contrapositive on the induction hypothesis, we haveA 6∼km B, which means
that Samson has a winning strategy for all m-move games, and we know
that Delilah loses at move m+ 1, so A 6∼km+1 B.

For the backwards direction of the theorem, we will use Lemma 3.2
alongside and induction onm. Form = 0, it is trivially the case thatA ≡k0 B
implies A ∼k0 B.

Suppose A ≡km B implies A ∼km B up to m, and show it for m + 1.
Suppose A ≡km+1 B. Note that, by the lemma, there are only finitely many
inequivalent sentences inLkm(τ). Imagineϕ1, . . . , ϕn are the onesA satisfies.
Then it is also the case that A |= ϕ1 ∧ · · · ∧ ϕn and trivially A |= ∃x(ϕ1 ∧
· · · ∧ ϕn). Since this formula is a sentence in Lkm+1(τ), by assumption, B |=
∃x(ϕ1 ∧ · · · ∧ϕn) and so B |= ϕ1, . . . ,B |= ϕn, and soA ≡km B. By induction
hypothesis A ∼km B, and in the m + 1-th move, Delilah can just choose the
right witness for whatever Samson chooses.

This theorem is a useful tool to prove our first simple inexpressibility
theorem.

Theorem 3.4 (Expressibility of CLIQUEk). Let k ∈ N, let CLIQUEk denote
the Boolean query on graphs containing those for which a k-clique exists, and let
γ be the vocabulary of graphs without order. In the language L(γ), CLIQUEk is
first-order expressible with k variables, but not with k − 1 variables:

CLIQUEk ∈ Lk(γ) \ Lk−1(γ)

Proof. It is easy to show that CLIQUEk ∈ Lk(γ). Simply note that he exis-
tence of a k-clique is expressed by the following formula κ:

κ : ∃x1 . . . ∃xk

Ö
distinct(x1, . . . , xk) ∧

∧
i,j∈[k]
i6=j

E(xi, xj)

è
How do we show that k variables are strictly necessary? Suppose for

contradiction that there was a formula κ′ on k − 1 variables that also de-
fined CLIQUEk. We can use the fundamental theorem to argue that if such a
formula existed, then it would follow that graphs with k − 1 vertices could
have a k-clique!
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Consider the structures Kk and Kk−1, encoding the complete graphs of
sizes k and k−1. Now see thatKk ∼k−1 Kk−1. In other words, when playing
over these two graphs with k − 1 pairs of pebbles, no matter what choice
Delilah makes to answer Samson’s, she wins. Therefore, by the fundamental
theorem, Kk ≡k−1 Kk−1, that is, they agree on all formulas contained in
L(γ)k−1. In particular, since κ′ ∈ L(γ)k−1 and Kk |= κ′, we have Kk−1 |= κ′.
But then Kk−1 has a clique of size k, which is impossible, as the graph only
has k − 1 vertices. Contradiction. We can conclude that such a κ′ cannot
exist.

Remark 3.1 (What was not proved). Based on the previous theorem, we have
CLIQUEk ∈ FO, hence CLIQUEk ∈ P. Unfortunately, this does not imply
CLIQUE ∈ P! Though it might seem intuitive to think so, we are talking
about CLIQUEk here, while CLIQUE =

⋃
k∈N CLIQUEk. One could think that

given some graph G with n nodes, one can construct the formula

κ :

n∨
k=1

κk

such that G |= κ if and only if κ ∈ CLIQUE. This is apparently a Boolean first-
order query, so from Theorem 1.2 (FO ⊆ L) it should follow CLIQUE ∈ L?
The answer is negative, as κ is not a first-order query. A first-order Boolean
query is defined by some fixed formula that works for every input structure.
This is not the case with κ: depending on the value of n, the formula will be
bigger or smaller (it will have more or less disjuncts). So this formula does
not work for any graph, thus it does not define CLIQUE in general.

3.2 First-order inexpressibility

The fundamental theorem in itself is not powerful enough to prove the type
of first-order inexpressibility results we are after, but it immediately gives
us the following theorem, which brings us closer.

Theorem 3.5 (Methodology Theorem). Let τ be a first-order vocabulary, and
let Q ⊆ STRUC[τ ] be a Boolean query. In order to show that query Q is not first-
order expressible, it suffices to show, for every n ∈ N, a pair of structures An and
Bn such that

(i) An ∈ Q and Bn 6∈ Q

(ii) An ∼n Bn
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Proof. Suppose for contradiction that query Q is expressed by first-order
formula ϕ, yet the conditions of the theorem hold. In particular, for the
quantifier rank of ϕ, q(ϕ), there exists a pair of structuresA and B such that
A |= ϕ, B 6|= ϕ and A ∼q(ϕ) B. From the latter, the fundamental theorem
givesA ≡q(ϕ) B, implying thatA and Bmust agree on all formulas of quan-
tifier rank q(ϕ). But this is not the case, as we just said that A |= ϕ and
B 6|= ϕ. Contradiction; such a ϕ cannot exist.

We can use this method to prove the first meaningful inexpressiblity
result.

Theorem 3.6. The property of a graph being acyclic is not first-order expressible.

Proof. We use the methodology theorem. For every natural number n, we
consider the pair of structures An and Bn as in Figure 1.

1 2 3

. . .

n− 1 n

An

2 3

. . .

n− 1 n

Bn

1 n+ 1

Figure 1: The graphs An and Bn from Theorem 3.6.

That is, An is an ascending chain of n points, and Bn is an ascending
chain of n+ 1 points that goes back from n+ 1 to 1. The graphAn is acyclic,
while Bn is not. Now note that when playing over n rounds with n pairs
of pebbles (it does not make sense to play with more), all points in A will
be chosen, while in Bn a point is always left unchosen. Hence the induced
substructure of Bn is acyclic, as there is always a gap. Besides, it is an as-
cending chain of n elements, so An ∼nn Bn. If we were to play with k < n
pebbles, then it is also clear that Delilah could still always match Samson’s
moves, so A ∼n B. The methodology theorem applies, telling us that there
is not fisrt-order formula defining the property of a graph being acyclic.
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A straightforward consequence is the fact that reachability is also not
first-order expressible.

Theorem 3.7. The reachability relation is not first-order expressible.

Proof. If there was a first-order formula R expressing reachability, then

∀x∀y(x 6= y → ¬(R(x, y) ∧R(y, x))

would define the property of being acyclic. But then acyclicity would be
first-order expressible, which contradicts the previous theorem.

Remark 3.2 (The absence of ordering). Though tempting, it does not fol-
low from the previous theorems that FO ( L. The inexpressibility results
proven so far apply to the language of first-order logic without ordering.
Though they are definitely going in the right direction, they do not settle
the separation between FO and FO(LFP). We will now develop heavier
machinery to tackle this goal.

3.3 Beyond games: FO ( P

As made clear by the previous remark, it is not possible to use the previous
inexpressibility results to show that FO 6= P, as those theorems only hold
for the language without ordering.

In order to show a separation that applies to FO, we need something
more elaborate. Recall the problem PARITY, which we worked with in
Example 2.1, which is in IND[log n]. That lower bound can be improved
slightly, but not much. In fact, it is not possible to express PARITY without
inductive definitions. In other words: PARITY 6∈ FO. We can use this to
separate FO from P. Proving this, however, is rather intricate. We do it in
three steps:

1. Show that FO = AC0, the class of Boolean circuits of polynomial size
and constant depth.

2. Prove Håstad’s switching lemma4.

3. Use the switching lemma to show that PARITY 6∈ AC0.
4We follow Immerman’s proof, which is copied verbatim from Beame, who wrote nicely

a counting argument by Razborov, who in turn simplified Håstad’s original proof, which
first appeared in his 1986 PhD thesis.
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3.3.1 FO = AC0

The class AC0 contains the problems that can be decided with Boolean cir-
cuits of polynomial size and constant depth. In order to make this more fair,
we let the gates in these circuits have unbounded fan-in.

It turns out that the reason FO is so weak is that it is exactly the same
as the very weak circuit class AC0.

Theorem 3.8. FO = AC0.

Proof. The tricky part is the forward inclusion: FO ⊆ AC0. Let τ be a
vocabulary, letQ ∈ FO, and let ϕ be the first-order formula definingQ. We
want to convert ϕ into a polynomial-size constant-depth circuit. We do this
by “grounding” ϕ into a propositional formula.

On inputs of size n, we ground ϕ in the following way, by substitut-
ing the atomic formulas by propositional ones. For every relation symbol
R ∈ τ of arity k, consider the propositional variables r(a1,...,ak), for every
(a1, . . . , ak) ∈ [n]k. For equalities, we consider the variables e(a,a′), for every
pair (a, a′) ∈ [n]2. Whenever an atomic variable occurs in ϕ, we substi-
tute it by the appropriate combination of propositional variables. We do
the same with ordering and numeric predicates. Then, on an input struc-
ture A ∈ STRUC[τ ] of size n, determine what the value of the proposi-
tional variables should be looking at the interpretation given inA, and serve
that bit-string as input to the circuit encoding the grounded formula for
inputs of size n. Because Q ∈ FO, ϕ can be checked in logspace, hence
also in poly-time, and so it cannot be an very big formula in n. Now, the
grounded version of ϕ is only polynomially-bigger, so it is still polynomial
in size. Besides the grounded ϕ has constant depth, because adding more
propositional variables asn increases does not make the circuit deeper (only
wider). Therefore, Q ∈ AC0.

For the backwards inclusion (AC0 ⊆ FO), simply note that a Boolean
circuit can be easily translated into a first-order formula by having a predi-
cate represent the input bit-string.

3.3.2 Håstad’s switching lemma

The switching lemma states rather intricately something quite intuitive: given
a Boolean formula over n variables, if we randomly assign values to a sig-
nificant number of the n variables and leave there rest unassigned, chances
are that the formula will already evaluate to either zero or one without any
further assignments.

33



Descriptive Complexity
Summary Notes

Noel Arteche
(February 2, 2021)

We formalize this in two results. First, the proper lemma (Lemma 3.10),
will tell us that the fraction of restrictions that will leave a big decision
tree for the restricted formula is very small. Then, we will be able to show
(Proposition 3.11) that if the amount of variables left unassigned in a constant-
depth circuit is less than some number depending on the size and depth of
the circuit, then there will be a restriction that turns the formula into a con-
stant.

Let us first develop the notation to make this more precise. Given a
Boolean function φ : {0, 1}n → {0, 1}, often assumed to be written as a
DNF formula, a restriction ρ : {x1, . . . , xn} → {0, 1, ?} is a partial assign-
ment to the variables in φ, such that the variables left unassigned are de-
noted with ?. We write φ|ρ to refer to the formula φ after instantiating the
partial assignment given by restriction ρ. We denote by R(r, n) the set of
all restrictions on n variables leaving r variables unassigned. Observe that
|R(r, n)| =

(n
r

)
· 2n−r.

In addition, given a Boolean formula φ in DNF, we denote by T (φ) the
binary decision tree of φ, defined as follows. If φ = C1∨· · ·∨Cm, then the root
of T (φ) is T (C1), which is just a binary decision tree for the clause C1. This
will have a single leaf labeled with 1, while the rest of the leaves are labeled
0, and represent each a restriction ρ, to which we append T (φ|ρ). We denote
by h(T (φ)) the height (or depth) of T (φ).

Before we state and prove the lemma, we need a technical claim that
will help us later. Let Stars(k, s) denote the set of sequences of subsets of
[k] such that the cardinalities of the subsets add up to s. We can give the
following upper-bound to the size of this set.

Lemma 3.9. |Stars(k, s)| ≤ (k/ ln 2)s.

Proof. Let γ be such that (1 + 1/γ)k = 2, and prove that |Stars(k, s)| ≤ γs.
By induction on s. For s = 0, the inequality holds trivially, by assuming
that the empty sequence counts. Assuming it holds for s′ < s, to prove
it for s, let σ ∈ Stars(k, s). Then, σ = (σ1, σ

′), and if |σ1| = i ≤ s, then
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σ′ ∈ Stars(k, s− i). There are
(k
i

)
choices for σ1, so

| Stars(k, s)| =
min{k,s}∑
i=1

Ç
k

i

å
· | Stars(k, s− i)|

≤
k∑
i=1

Ç
k

i

å
· γk−i (by induction hypothesis)

= γk
k∑
i=1

Ç
k

i

å
· 1

γi

= γs ·
Ä
(1 + 1/γ)k − 1

ä
= γk

Now, since 1 + x < ex for every x > 0, we have that

1 +
1

γ
< e

1
γ

and hence (1 + 1/γ)k < ek/γ . Taking logarithms on both sides and noting
that the left-hand side of the inequality is 2, we have

ln 2 <
k

γ
ln e

hence γ < k
ln 2 . Combining this with the inequality proven by induction, we

get the inequality stated in the lemma.

We are now ready to state and prove Håstad’s lemma. The idea formal-
ized is that the fraction of restrictions for which the resulting decision tree
is very deep is very small. In particular, is says that when assigning at least
six sevenths of the input variables, the resulting formula is very likely to be
quite straightforward to decide.

Lemma 3.10 (Håstad’s switching lemma). Let φ be a DNF formula of width
k over n variables (i.e. each clause has at most k literals). Let p < 1/7, and let
r = pn. Then, for all s ≥ 0,

|{ρ ∈ R(r, n) | h(T (φρ)) ≥ s}|
|R(r, n)|

< (7pk)s

Proof. LetR = {ρ ∈ R(r, n) | h(T (φρ)) ≥ s}. We want to show that |R|
|R(r,n)| <

(7pk)s. We do this by showing that there is an injective function from R to
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a set that we can upper-bound in size, hence giving an upper-bound on the
size of |R|

|R(r,n)| , which will later imply the inequality stated in the lemma.
That is, we claim that there exist an injective function

α : R→ R(r − s, n)× Starts(k, s)× {0, 1}[s]

This can be achieved as follows. Suppose φ = C1 ∨ · · · ∨ Cm. For every
ρ ∈ R, suppose Ci is the first clause in φ that is not made zero under ρ.
In other words, Ci|ρ 6= 0, and for all j < i, Cj |ρ = 0. Now take the first
branch (under some ordering of the tree, like the lexicographic order) of
T (φ|ρ) that has length at least s, and call it b. Let Vi be the set of variables
left unassigned inCi|ρ, and let ai be an assignment to the variables in Vi that
makes Ci|ρ = 1. If b ends before all the variables in Vi have been assigned,
then let bi = b and shorten ai, so that is only assigns values to the same
variables as b. Otherwise, let bi be the initial segment of b that assigns values
to the variables in Vi.

Now consider the set σi ⊆ [k] including those x such that the x-th vari-
able in Vi is set by ai. It happens that σi is nonempty, and from σi and Ci we
can reconstruct ai.

If b 6= bi, then b−bi is still a path in T (φ|ρbi), so we take the next clauseCj ,
i < j, such thatCj |ρbi 6= 0 and repeat the process above, taking a segment bj
of the branch and an assignment aj . We keep doing this until the branch is
used up. We will have split b into segments, b = bi, bj , . . . and we will have
an assignment a = ai, aj , . . . assigning values to all the variables that show
up in branch b.

Finally, define a map δ : [s] → {0, 1} such that δ(x) = 1 if and only if a
and b agree on the value they assign to variable x. Then, let the image of ρ
be

α(ρ) = (ρa, (σi, σj , . . . ), δ)

The function α is injective, in that from α(ρ) we can reconstruct ρ as
follows: Ci is the first clause that evaluates to 1 under ρa. From Ci and
σi we reconstruct ai, and using δ we can reconstruct the segment bi of the
branch. We can repeat this process until we get the original ρ. Hence, α is
injective.

Now that we have an injective function, we have

|R| ≤ |R(r − s, n)| · | Starts(k, s)| · 2s

and thus
|R|

|R(r, n)|
≤ |R(r − s, n)|

|R(r, n)|
· | Starts(k, s)| · 2s
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Now note that because |R(r, n)| =
(n
r

)
· 2n−r, we have

|R(r − s, n)|
|R(r, n)|

=

( n
r−s
)
· 2n−(r−s)(n

r

)
· 2n−r

=

( n
r−s
)(n

r

) · 2s ≤ Å 2r

n− r

ãs
Combining this with the upper-bound |Stars(k, s)| ≤ (k/ ln s)s from the

previous lemma, we get

|R|
|R(r, n)|

≤
Å

2r

n− r

ãs
·
Å
k

ln 2

ãs
· 2s

=

Å
4rk

(n− r) ln 2

ãs
=

Å
4pk

(1− p) ln 2

ãs
where the last equality is obtained when replacing r = pn. For p < 1/7, the
above expression is less than (7pk)s. This was to show.

We can now use the switching lemma to show that a circuit that is small
can be made constant by restricting some of its variables. This is where the
“switching” aspect of the lemma gets into action.

Proposition 3.11. LetC be a circuit of size s, depth d and unbounded fan-in. If we
choose r ≤ n/(14d(log s)d−1)− (log s− 1), then there is a restriction ρ ∈ R(r, n)
for which C|ρ is constant.

Proof. We assume that the circuit is rearranged in alternating layers of AND
and OR gates, such that the input level has all OR gates. Similarly, we as-
sume that both the input bitsx1, . . . , xn as well as their negations¬x1, . . . ,¬xn
are available and only used in the first level.

At the first layer, there are at most sOR gates, each taking as inputs up to
n literals. Hence, we have at most sDNFs with clauses of width k = 1. Now,
we know that if we assign values to a lot of the variables, a lot of these gates
will be easily decided. More formally, for each OR gate G on the first layer,
we can apply Håstad’s switching lemma with p = 1/14 and r1 = pn = n/14
and we get

|{ρ ∈ R(r1, n) | h(T (Gρ)) ≥ log s}| < 2− log s · |R(r1, n)|

In other words, most of the assignments to 13/14-ths of the variables make
the clauses easy to decide. Adding over all input OR gates, of which there
are at most s, we have that the number of restrictions ρ for whichh(T (G|ρ)) ≥
log s for some G is at most

s · |{ρ ∈ R(r1, n) | h(T (G1ρ)) ≥ log s}| < s · 2− log s · |R(r1, n)| = |R(r1, n)|
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In particular, since it is less than |R(r1, n)|, that means there is a restric-
tion ρ1 ∈ R(r1, n) such that all gates on the input level are turn into decision
trees of height less than log s.

For each of these trees, consider the branches that lead to zero: they
have length at most log s and they can be written as a conjunction of literals,
representing the decisions taken to reach those leaves. Then, the gate can
be expressed as a conjunction of the negation of these clauses. And by De
Morgan’s laws, this can be converted into a CNF of width log s. In short,
the input layer, formed by DNFs, has switched into a layer of CNFs. This is
where the “switching” in the switching lemma comes from.

Now the second layer, which contains AND gates, is basically formed
by CNFs, whose clauses are the CNF coming from the switched first layer
i.e. the second layer has CNFs of width at most log s. If G is now a gate in
the second layer, we can apply the switching lemma again, this time with
width k = log s, p = 1/(14 log s) leaving r2 = pr1 = r1/(14 log s) variables
unassigned, and get

|{ρ ∈ R(r2, r1) | h(T (Gρ1)) ≥ log s}| < 2− log s · |R(r2, r1)|

By the same argument as before, there exists a restriction ρ2 ∈ R(r2, r1)
under which every gate at level two switched to a DNF formula of width at
most log s.

We keep repeating this process through all d levels, ending with a re-
striction ρ = ρ1ρ2 . . . ρd such that h(T (C|ρ)) < log s. Note that the number
of variables left unassigned in ρ is

rd =
n

14d(log s)d−1

so after taking any branch b in T (C|ρ), we will have that in C|ρb there will
be have at least

r = rd − (log s− 1) =
n

14d(log s)d−1
− (log s− 1)

variables left unassigned.
Therefore, we can conclude that given a circuit C, there exists a restric-

tion that makes the circuit constant while leaving r variables or less unas-
signed. This was to show.

3.3.3 PARITY 6∈ FO

The previous proofs were difficult and technical, but they directly imply our
impossibility result.
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Theorem 3.12. Constant-depth, unbounded fan-in Boolean circuits need exponen-
tial size to compute PARITY.

Proof. Suppose C is a size-s, depth-d unbounded fan-in circuit computing
PARITY for inputs of size n. Suppose we want to take a restriction of C
that leaves only one variable unassigned. Furthermore, assume that 1 ≤
n/(14d(log s)d−1)−(log s−1). Then by the previous proposition, there exists
a restriction ρ ∈ R(1, n) such thatC|ρ is constant. But this cannot be, because
PARITY is sensible to any bit-flip, so it cannot be made constant by fixing
some of its inputs. Hence, it must be that 1 6≤ n/(14d(log s)d−1)− (log s−1).
Then we have the following inequalities:

1 >
n

(14d(log s)d−1)
− (log s− 1)

log s >
n

14d(log s)d−1

(log s)d >
n

14d

log s >
n1/d

14

s > 2
1
14
n1/d

We conclude that C is exponential in size. This was to show.

Recall that AC0 contains problems that are solvable by constant-depth
polynomial-size circuits. Hence,

Corollary 3.13. PARITY 6∈ AC0 = FO.

Now recall from Example 2.1 that PARITY ∈ IND[log n] ⊆ FO(LFP) =
P. Hence, PARITY ∈ P but PARITY 6∈ FO. This is what we have been after.

Corollary 3.14. FO ( P.

This result further limits the power of first-order queries. Until now,
we supposed that FO was weak based on complexity conjectures such as
L 6= P. Now we can tell for sure: there are problems that are easy to
compute that cannot be described using first-order logic alone. This fur-
ther justifies the use of inductive definitions to capture P: they are strictly
necessary! Unfortunately, this separation alone does not yet prove any sep-
arations between the in-between classes. In order words, it does not settle
anything about the relations between L, NL and P.
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4 NP under the descriptive framework

Now that we proved FO ( P, we know that we will not be able to char-
acterize the class NP using first-order formulas only. Besides, under the
widely-believed P 6= NP, we do not expect to be able to express all NP
problems using only first-order logic with inductive definitions. It is there-
fore time to increase our linguistic resources.

In 1974, Ronald Fagin did so, and gave a characterization of NP using
existential second-order logic. The fact that jumping to second-order logic
is necessary to capture NP gives further evidence that P 6= NP.

We start by introducing second-order logic as an extension to what we
already know, and show how some well-known NP problems can be eas-
ily stated using second-order formulas. We then prove Fagin’s theorem,
look into how NP-complete problems are preserved under first-order re-
ductions, and we finish by extending our results to the Polynomial Hierar-
chy, showing that it is exactly the class of problems characterized by the full
power of second-order logic.

4.1 Second-order logic

Second-order logic is a natural extension of first-order logic. Now, in ad-
dition to the usual quantification over the elements of our domain, we can
also quantify over predicates. That is, we can quantify over relations on that
domain.

Definition 4.1 (Second-order languages). Let τ = C ∪ P be a first-order
vocabulary. In second-order logic, we consider a set of variables

V = {x, y, z, . . .}︸ ︷︷ ︸
V1

∪{R1, R2, . . . , S1, S2, . . .}︸ ︷︷ ︸
V2

where V1 is the set of first-order variables and V2 contains second-order vari-
ables. These are tagged with a number, indicating their arity.

A term is still just a first-order term (a constant symbol c ∈ τ or a first-
order variable fromV1), while second-order variables applied on terms work
as atomic formulas.

A formula is just built from terms using the same quantifiers and opera-
tors as in first-order logic, with the difference that now quantifiers can also
take a second-order variable. We will implicitly distinguish between first-
order and second-order quantifiers, though the symbols will be the same.

We denote by S(τ) the set of all well-formed second-order formulas
from vocabulary τ .
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Definition 4.2 (Second-order satisfaction). Let τ be a first-order vocabulary.
Structures remain the same as in first-order logic. Hence, letA ∈ STRUC[τ ].
A second-order assignment is a function s : V →

⋃
n∈NA

n assigning first-
order variables to elements inA and second-order variablesXn to elements
in An. The interpretation of a second-order variable is the same a for first-
order variables: RnAs = s(Rn) ⊆ An.

We can then extend first-order semantics with two new cases:

• If ϕ = Rn(t1, . . . , tn), then

A, s |= Rn(t1, . . . , tn) iff (t1
A
s , . . . , tn

A
s ) ∈ s(Rn) ⊆ An

• If ϕ = ∃Rnψ, then

A, s |= ∃Rnψ iff there is an Rn-variant s′ of s for which A, s′ |= ψ

The notion of first-order queries admits an immediate generalization.

Definition 4.3 (SO andSO-E). We denote bySO the set of all second-order
Boolean queries. We denote by SO-E the set of all second-order Boolean
queries using only existential second-order quantifiers5.

Example 4.1 (3COL,SAT ∈ SO-E). We can already write well-known NP
problems into second order-formulas. For example, the query 3COL ⊆
STRUC[γ] asking whether a graph is 3-colorable can be written as

∃R1∃Y 1∃B1∀x((R(x) ∨ Y (x) ∨B(x)) ∧ ∀y(E(x, y)→
¬((R(x) ∧R(y)) ∨ (Y (x) ∧ Y (y)) ∨ (B(x) ∧B(y))))

More interestingly, SAT has a very succinct representation as a second-
order formula, using the vocabulary from Example 1.5:

∃S1∀x∃y((P (x, y) ∧ S(y)) ∨ (N(x, y) ∧ ¬S(y)))

Hence 3COL, SAT ∈ SO-E ⊆ SO.

4.2 Fagin’s theorem: NP = SO-E

Given that, as in the previous example, we can write well-knownNP-complete
problems into second-order logic, it is not surprising that NP is precisely
the class of existential second-order Boolean queries. This is exactly the con-
tent of Fagin’s theorem. We now prove this in some detail.

The right-to-left inclusion is rather straightforward.
5There may still be universal quantifiers, but only on first-order variables.
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Proposition 4.1. SO-E ⊆ NP.

Proof. We need to show that every existential second-order Boolean query
can be computed in non-deterministic polynomial time. Let τ be a vocabu-
lary, letQ ⊆ STRUC[τ ] be such thatQ ∈ SO-E, and letϕ = ∃Rr11 . . . ∃Rrrk ψ ∈
S(τ) be the second-order formula defining Q.

We show that there exists a non-deterministic polynomial-time Turing
machine M such that for every A ∈ STRUC[τ ],

A |= ϕ⇔M(bin(A)) = 1

The machine is simple: given A ∈ STRUC[τ ], |A| = n, the machine M
simply “guesses” non-deterministically the right interpretations for the re-
lations Rr11 , . . . , R

rr
k . That is, it writes, for every Rrii , a bit-string of length

nri , which is simply the binary representation of a correct interpretation for
this symbol (using the representation defined in Definition 1.7). This takes
time Θ(

∑k
i=1 n

ri), which is polynomial in the input structure’s size, n. Now,
given the right interpretations in binary for the second-order variables, as
well as the binary representation of A received as input, checking ψ is sim-
ply checking a first-order formula, and we know FO ⊆ L, so this can be
done in polynomial time. Hence, SO-E ⊆ NP.

The other direction of the theorem is a bit trickier, as it requires to encode
a computation into a second-order formula.

Proposition 4.2. NP ⊆ SO-E.

Proof. Let query Q ⊆ STRUC[τ ] be in NP. That means there exists a non-
deterministic Turing machineM computingQ in nk steps for some k. Then,
we build a second-order existential sentence ϕ such that for every A ∈
STRUC[τ ], A |= ϕ if and only if M(bin(A)) = 1.

The main idea is that this formula will use a second-order existential
quantifier to find the sequence of non-deterministic choices that makes M
accept, if there is such a sequence. That is: at every computation step i ∈
[nk], machine M chooses non-deterministically which of the two transition
functions to use. Let δi ∈ {0, 1} encode that choice. We will encode the
sequence of choices δ1, . . . , δnk into a k-ary second-order variable ∆k. We
can do this because working on base n, we can encode every number in [nk]
using a tuple of length logn n

k = k. Then we consider predicate ∆k, such
that for every i ∈ [n]k, ∆k(i) is true if and only if δi = 1.

We now need some extra book-keeping to do: we still need to specify the
details of the machine into the formula, but we leave most of the work to the
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existential quantifiers. Since the machine runs in time nk, it also does not
use more that nk cells of memory. We can represent the Turing machine’s
trace by a nk × nk matrix C, where position C(i, j) = s, containing the
symbol s written in cell j at time i. If, in addition, the machine’s head is at
that cell at that step, we suppose it contains the pair (q, s), where q is the
machine’s current state. If the machine uses symbols from Σ and has as
set of states Q, then each cell of the matrix can take one of the elements in
Σ ∪ (Q×Σ). This set is finite, so we can enumerate the elements. Say there
are |Σ ∪ (Q × Σ)| = c possible contents for the cells. Then we represent
the machine’s trace matrix C using c predicates C2k

1 , . . . , C2k
c . Each of these

predicates takes two tuples i, j ∈ [n]k, each representing a number between
1 and nk, such that Cs(i, j) is true if and only if the trace matrix contains the
s-th content symbol on cell j at step i.

Then, the formula ϕ encoding M will be

ϕ : ∃∆k∃C2k
1 . . . ∃C2k

c µ

where µ is a first order formula making sure that the given predicates cor-
rectly compute the query. That is,

µ = I ∧ S ∧ T ∧A

Here I checks the input (that content of the tape at the first step is bin(A)).
Formula S makes sure that no two things are simultaneously written on the
same cell,

S :
∧

i,j∈[n]k

s6=s′

(¬Cs(i, j) ∨ ¬Cs′(i, j))

Formula T encodesM ’s transition function, making sure that for every step
i, the next row in the matrix follows from the i-th one following choice ∆k(i).
Finally, A checks that state nk is the accepting state.

Clearly, ϕ expresses that there exists an accepting computation of M on
input A. Hence, for every A ∈ STRUC[τ ], M(bin(A)) = 1 if and only if
A |= ϕ. Therefore, Q ∈ SO-E. This was to show.

We then just proved both directions of Fagin’s theorem.

Theorem 4.3 (Fagin’s theorem). NP = SO-E.

Remark 4.1 (Certificate definition of NP). Today, we often define NP as the
class of problems for which short certificates of membership exist, instead of
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referring to non-deterministic polynomial time. The idea of the certificate-
based definitions was in part inspired by Fagin’s theorem. For that reason,
the result might not be as striking now as it was in 1974. For example, we
know that SAT or 3COL are in NP because they have short certificates (an
assignment or a 3-coloring, respectively), and this is specially obvious from
the second-order formulas in Example 4.1. In a way, second-order syntax
makes the structure of these certificates more explicit than when me sim-
ply talk about a binary string bounded in length by some polynomial, and,
perhaps, that extra structure could be helpful in proving separations.

4.3 NP-completeness under first-order reductions

An alternative approach to proving NP ⊆ SO-E in Fagin’s theorem would
have been to use the same technique as for Theorem 2.3 (FO(LFP) = P):
show that both SO-E and NP are closed under first-order reductions, give
some complete problem for NP under first-order reductions and finally
show that this problem is also in SO-E.

We now look into the topic of first-order reductions and complete prob-
lems for NP. Given that the theory of NP-completeness under the usual
polynomial-time reductions has been so successful, do first-order reduc-
tions work equally well in this class?

We first make sure that we have first-order closure. That is, first-order
reductions keep working in the intended way in this new class.

Proposition 4.4. The class NP (and hence also SO-E) is closed under first-order
reductions.

Proof. The class NP is closed under logspace reductions, so by Proposition
1.3, NP is closed under first-order reductions. By Fagin’s theorem, SO-E is
also closed under first-order reductions.

The most importantNP-complete language, as shown by the Cook-Levin
theorem in 1973, is SAT. This problem remains complete under the weaker
first-order reductions.

Theorem 4.5. SAT is NP-complete under first-order reductions.

Proof. We already know that SAT ∈ NP. We show that for every other
query Q ∈ NP, Q ≤fo SAT. From Proposition 4.2 (NP ⊆ SO-E) we know
that there exists a second-order formula characterizing Q. Using the same
notation as in the proof of Fagin’s theorem, that formula is of the form

ϕ : ∃∆k∃C2k
1 . . . ∃C2k

c µ

44



Descriptive Complexity
Summary Notes

Noel Arteche
(February 2, 2021)

Then, we simply make the predicates “explicit” by introducing proposi-
tional variables that represent them. In particular, we introduce nk propo-
sitional variables d1, . . . , dnk to represent predicate ∆k, as well as variables
p1,(1,1), . . . , pc,(nk,nk) to represent predicates C2k

1 , . . . , C2k
c on all possible in-

puts. Then go through µ and interchange each occurrence of the second-
order variables with the corresponding combination of propositional ones,
as well as numeric predicates with > and ⊥, after evaluating them on the
structure. For every structureA, this process yields a propositional formula
that is satisfiable if and only if A |= ϕ, hence if and only if A ∈ Q. It can
be checked that all of this can be described in first-order logic. Represent-
ing the propositional formula into the language of Example 4.1, we have
that this is a nk + 1-ary first-order query. Thus, Q ≤fo SAT. This was to
show.

4.4 The Polynomial Hierarchy

In the same way that Fagin’s theorem characterizes the class NP as existen-
tial second-order logic, it is intuitive to suppose that this characterization
can be generalized to nearby classes. Intuitively, it should hold that coNP
is precisely universal second-order logic, and in fact such generalization can
be extended to the entire Polynomial Hierarchy. That is, we conjecture (and
prove) that PH = SO.

Unlike for other complexity classes, we cannot prove PH = SO using
complete problems and first-order closure. After all, PH is conjectured not
to have complete problems, as otherwise the hierarchy would collapse.

Let us recall that complexity classes in these notes are taken to be de-
fined originally based on machines. Hence, each level Σp

i of the polynomial
hierarchy is defined as the class

⋃
c∈N ΣiTIME[nc], where ΣiTIME[nc] rep-

resents the class of problems computable by alternating Turing machines
starting on existential states that run in time nc and alternate at most i − 1
times.

The main insight is given by the following lemma.

Lemma 4.6. For every k ∈ N∗, Q ∈ Σp
k if and only if Q can be defined by a

second-order formula of the form

∃R1∀R2 . . . QkRkϕ

where Qk is either ∀ or ∃, depending on whether k is odd or even.

Proof. By induction on k. For k = 1, if Q ∈ Σp
1, then Q is decided by

a polynomial-time alternating Turing machine that starts at an existential
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state and never alternates. That is exactly a polynomial-time non-deterministic
Turing machine. Indeed, Σp

1 = NP. So by Fagin’s theorem,Q can be defined
as a second-order existential formula. The backwards direction follows sim-
ilarly: if Q is defined by a second-order existential formula, a structure A
models the formula if and only if there exists a correct interpretation for
the existential predicates. Say c is the maximum arity amongst them. Then
the interpretation, written in binary, takes spaceO(nc). The idea is that this
bit-string encodes the transition choices made by the machine. Hence the
machine runs in time O(nc) and goes only through existential states. So
Q ∈ Σp

1.
For the inductive step, assume the lemma holds up to k and show it for

k + 1. Suppose Q ∈ Σp
k+1. Then, there exist an alternating Turing start-

ing in an existential state, alternating for k times and accepting in nc steps,
for some constant c. Then, as before, the existential transition choices of
the first block make the interpretation for an existential predicate, and then
we introduce a universal predicate as long as the number of steps the ma-
chine runs on the first universal block. Then, by induction hypothesis, there
exists an alternating second-order formula with k alternations that we can
append to this quantifier prefix, giving the desired second-order formula.
The backwards direction follows from the same reasoning as in the base
case.

We now show that the full power of second-order logic characterizes
PH.

Theorem 4.7. PH = SO.

Proof. IfQ ∈ PH, thenQ ∈ Σk
i for some k, hence by the previous lemmaQ is

second-order expressible, henceQ ∈ SO, so PH ⊆ SO. On the other hand,
if Q ∈ SO, then on the formula defining Q, when written in prenex from,
one can easily readapt quantifiers, the formula and the arity of predicates
so that the formula takes the form of a k-alternating formula for some k,
hence by the previous lemma Q ∈ Σp

k, thus Q ∈ PH, SO ⊆ PH. It follows
that PH = SO.

Remark 4.2 (P ?
= NP in the descriptive framework). Since PH = SO and

we know that P = NP if and only if the polynomial hierarchy collapses at
level zero, we have that P = NP if and only if P = SO, that is, if and only if
FO(LFP) = SO. In other words, the question P

?
= NP can be rephrased in

descriptive terms as: Can all second-order Boolean queries be expressed as first-
order Boolean queries containing (monotone) inductive definitions?
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5 PSPACE under the descriptive framework

We have seen that PH = SO, and we conjecture that PSPACE 6= PH, so,
perhaps unintuitively, second-order logic alone does not seem to help us in
describing PSPACE-complete problems.

Descriptive complexity gives several characterizations ofPSPACE. Some
of these rely on ideas and classes that we have not covered here, but we still
provide two alternative characterizations of the class, one using an exten-
sion of first-order logic, and one using an extension of second-order logic.

First, we make sure that the usual PSPACE-complete problems under
polynomial-time reductions are also complete under first-order reductions.
We then look into iterative definitions, an extension of inductive definitions
that drops the monotonicity requirement in order to capture polynomial
space. Finally, we look into how second-order logic can describe PSPACE.

5.1 PSPACE-completeness under first-order reductions

The most famous PSPACE-complete problem is probably TQBF: the set
of true quantified Boolean formulas (QBF), a natural extension of SAT. This
problem remains complete under first-order reductions.

Theorem 5.1. TQBF is PSPACE-complete under first-order reductions.

Proof. We know that TQBF is complete under polynomial-time reductions,
so TQBF ∈ PSPACE. We now show that for every other query Q ⊆
STRUC[τ ] such that Q ∈ PSPACE, Q ≤fo TQBF. We use the fact that
PSPACE = AP, the class of problems solved by alternating Turing ma-
chines in polynomial time.

Say M is an alternating Turing machine deciding Q in time nk. We can
rearrangeM into a normal form whereM writes down its transition choices
and then executes them deterministically. If c = c1, . . . , cnk is the sequence
of choices, then we can imagine a deterministic machine D taking as input
c and A ∈ STRUC[τ ],

M(bin(A)) = 1⇔ ∃c1∀c2 . . . QnkckD(c, bin(A)) = 1

We can now easily see D as a non-deterministic Turing machine, and
hence L(D) ∈ NP. As a result, L(D) ≤fo SAT, so there exists a first-order
query f such that

D(c, bin(A)) = 1⇔ f(A) ∈ SAT
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If d1, . . . , ds are the additional Boolean variables of f(A), then

M(bin(A))⇔ ∃c1∀c2 . . . Qnkcnk∃d1 . . . ∃dsf(A) ∈ TQBF

concluding that Q ≤fo TQBF.

Let us look at a different example, related to graphs.

Definition 5.1 (GEOGRAPHY). Let G = (V,E) be a graph, and let s ∈ V
be a fixed node in the graph. The game Geography is played between Player
P and Player Q over graph G starting at s. For the first move, Player P
chooses node s. Then, Player Q has to choose a node v1 ∈ V adjacent to s:
(s, v1) ∈ E. Then, Player P chooses a node v2 ∈ V , different form s and v1,
adjacent to v1, and so on. One of the players loses whenever they are stuck:
they cannot choose a further node, because there are no adjacent nodes, or
because they have already been visited before.

We denote by GEOGRAPHY the problem containing the graphs with a
starting node such that PlayerP has a winning strategy for Geography start-
ing at that point.

Theorem 5.2. GEOGRAPHY isPSPACE-complete under first-order reductions.

Proof. GEOGRAPHY is in PSPACE: there is a winning strategy for Player
P if and only if there exists a first move (s) such that for any move Q makes,
there exists a move for P , such that for every move Q makes... Q ends up
being stuck. Clearly, GEOGRAPHY can be easily encoded into a QBF, and
PSPACE is closed under first-order reductions, so GEOGRAPHY ∈ PSPACE.

Now we show that GEOGRAPHY is complete by showing that TQBF ≤fo
GEOGRAPHY. Suppose Φ is a QBF, which we arrange so that it is written in
PCNF (prenex conjunctive normal form). Then we will build a graph over
which a winning strategy for Geography exists if and only if Φ is true.

We show how to build this graph with an specific example. Take

Φ : ∃x1∀x2∃x3((x1 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ x3))

and build the graph as in Figure 2. At each diamond, the player makes a
choice as to what value to assign to one of the variables, and when they
reach the clauses, player Q will try to choose one that is made false, in the
sense that all the literal nodes have been used already. Therefore, Φ ∈ TQBF
if and only if the graph built is in GEOGRAPHY.

With some technical work, we can extend the vocabulary of Example 1.5
to encode quantifiers for Φ, while the vocabulary for the graph will be the
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usual vocabulary γ = {s, E}we have been using. We can suppose that each
vertex in the graph is represented as a triple (i, j, k) ∈ [n]3. In particular, for
the vertices in a diamond, these will be

(i, j, k) ∈ [n]× {1, 2, 3, 4} × {1}

where i refers to the variable xi being played over, the index j indicates
which one of the four vertices of the diamond we are referring to, and the
third index is dummy.

For the clause nodes, we represent them as

(i, j, k) ∈ [n]× {1} × {2}

where i refers to the clause, j is fixed and k = 2, indicating that this is a
clause node.

Under this representation, writing the query describing the graph is eas-
ily done in first-order logic, albeit tediously. We omit the formulas. This
will be a ternary first-order query. Hence, TQBF ≤fo GEOGRAPHY. We
conclude that GEOGRAPHY is PSPACE-complete.

s

x1 = 0

x1 = 1

x2 = 0

x2 = 1

x3 = 0

x3 = 1 x1 ∨ ¬x2

x1 ∨ x2 ∨ ¬x3

x2 ∨ x3

Figure 2: Graph construction for a Geography game on Φ.

Despite their different aspect, the two previous problems belong to the
same “flavour” of PSPACE-complete problems; they consist of some se-
quence of decisions, quantified alternatingly. The other flavour, more use-
ful for our descriptive purposes, revolves around reachability problems on
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exponential-size graphs. For example, a polynomial-space Turing machine
has a configuration graph of exponential size, implicitly defined by its tran-
sition function, and deciding whether the machine accepts on a certain in-
put amounts to deciding whether there is a path from the start to the ac-
cepting state in this graph.

Definition 5.2 (TMREACH). We denote by TMREACH the problem of de-
ciding whether a deterministic Turing machines accepts a certain input x in
space |x|k, for some k fixed in the input.

Theorem 5.3. TMREACH is PSPACE-complete under first-order reductions.

Proof. First, TMREACH ∈ PSPACE. Note that if M runs in polynomial
space, so that on inputs of size n it uses s(n) = nk cells of memory, then the
transition graph ofM on some input x has size 2O(nk), has an starting vertex
s and an accepting vertex a, and deciding whether M(x) = 1 amounts to
showing whether a is reachable from s in the configuration graph, which is
an exponential-size implicitly described graph. Hence, the algorithm is the
same as for DREACH: if there is a path from s to a, then this has length at
most 2O(nk). We keep a counter up to that number, in a bit-string of length
O(nk), to make sure that the walk never runs for longer than that. Then, at
every step, we computeM ’s next step from the current state using its transi-
tion function. This algorithm is deterministic and runs in polynomial space,
as it only needs to keep a step counter that is never bigger than polynomial
in size.

To show completeness, the reduction is simple: given Q ∈ PSPACE,
take the machine M that decides Q in polynomial space, and then run the
algorithm above on its transitions graph. The first-order formulas describ-
ing the reduction have the machine’s transition function hardwired in them.
Hence, Q ≤fo TMREACH.

5.2 Capturing PSPACE with first-order logic

So far, the strongest extension of first-order logic we have defined inFO(LFP),
which is exactly P. That operator imposes a constraint in our definitions:
monotonicity. Thanks to monotonicity, the Knaster-Tarski theorem ensured
that we can find the least fixed-point in polynomial time, but this is (likely)
too weak to capture PSPACE. We now present iterative definitions, an ex-
tension of inductive definitions in which we drop the monotonicity require-
ment.
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Definition 5.3 (Partial fixed-points, iterative definitions andFO(PFP)). The
partial fixed-point operator, pfix, is an extension of the least fixed-point opera-
tor fix from section 2.1. Given a vocabulary τ and a formulaϕ(R, x1, . . . , xk),
where R is a new relation symbol of arity k and ϕ is not necessarily mono-
tone, for every structure A ∈ STRUC[τ ], we say that pfixR(x1,...,xk)

ϕ is an
iterative definition, where

pfixR(x1,...,xk)
ϕ =

®
ϕrA(∅) if there is an r such that ϕrA(∅) = ϕr+1

A (∅)
∅ otherwise

We denote by FO(PFP) the set of all Boolean queries definable using
first-order logic with the pfix operator.

Example 5.1 (TMREACH ∈ FO(PFP)). Consider an input structureM im-
plicitly encoding a machine M = (Γ, Q, δ), an input x ∈ {0, 1}∗ to that ma-
chine, and a number k ∈ N, so that the task is to decide whether M(x) = 1
in space |x|k.

With some work, one can write an iterative definition for counting up
to 2n

k in binary. Then we could combine the counter with a formula that
starts in the accepting state of the configuration graph and tries to reach the
starting state, while the counter does not overflow. This can be recursively
defined using pfix, but the encoding is not at all obvious.

From the example above we see that iterative definitions are strong enough
to capture PSPACE-complete problems. It turns out that FO(PFP) is pre-
cisely PSPACE.

Theorem 5.4. FO(PFP) = PSPACE.

Proof. The proof goes very much in the same lines as the proof of Theo-
rem 2.3 (FO(LFP) = P). For the forward inclusion, the only difference is
that we need to make sure that the partial fixed-point can be computed in
polynomial space. Since we have dropped monotonicity, at every step tu-
ples cannot only be added, but also removed. Hence, there are at most 2n

k

possible interpretations for the partial fixed-point. Although this takes ex-
ponential time, in each iteration we only check which of polynomially many
tuples enter or leave the relation. So we only needO(nk) space to keep track
of this. Hence FO(PFP) ⊆ PSPACE.

For the backwards inclusion, observe that TQBF is PSPACE-complete
(Theorem 5.1), so every every Q ∈ PSPACE, Q ≤fo TQBF. At the same
time, by Example 5.1, TQBF ∈ FO(PFP), and it is easy to check thatFO(PFP)
is closed under first-order reductions, so Q ∈ FO(PFP). We have that
PSPACE ⊆ FO(PFP). This completes the proof.
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Analogously to the idea of FO[f(n)] developed in section 2.3, the fact
that pfix iterates exponentially many times lets us characterize PSPACE as
FO[2n

O(1)
]. Note that for such a super-polynomial function, Theorem 2.5

breaks. We could, however, state a more general version of it, denoting by
ITER[f(n)] the set of queries definable using pfix up to exponential depth,
having ITER[2n

O(1)
] = FO[2n

O(1)
].

5.3 Capturing PSPACE with second-order logic

Interestingly, PSPACE can be captured with both extensions of first-order
and second-order logic. As with first-order logic, the second-order charac-
terization of PSPACE can be done either with a new operator (the transi-
tive closure operator) or through quantifier block iterations. We have not
properly introduced the former, so we simply develop the intuition behind
the quantifier block iterations.

As we just saw,PSPACE = FO[2n
O(1)

]. If we defineSO[f(n)] asFO[f(n)]
but for second-order quantifier blocks, then it turns out that PSPACE =
SO[nO(1)]. In other words, polynomial space corresponds to exponentially
many first-order quantifier block iterations, while for second-order logic,
we only need polynomially many iterations.
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